Teresa Pellegrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/247766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Letters, 2005, 5, 331-338.	4.5	1,527
2	Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell:Â A General Route to Water Soluble Nanocrystals. Nano Letters, 2004, 4, 703-707.	4.5	1,003
3	Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35, 1195.	18.7	855
4	Biological applications of colloidal nanocrystals. Nanotechnology, 2003, 14, R15-R27.	1.3	698
5	Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 2016, 10, 2436-2446.	7.3	651
6	Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano, 2012, 6, 3080-3091.	7.3	638
7	Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano, 2015, 9, 1788-1800.	7.3	536
8	Labelling of cells with quantum dots. Nanotechnology, 2005, 16, R9-R25.	1.3	438
9	From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 2010, 62, 126-143.	3.1	417
10	Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu ⁺ lons. Journal of the American Chemical Society, 2013, 135, 17630-17637.	6.6	377
11	On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications. Small, 2004, 1, 48-63.	5.2	353
12	Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Letters, 2013, 13, 2399-2406.	4.5	351
13	Magnetic hyperthermia efficiency in the cellular environment forÂdifferent nanoparticle designs. Biomaterials, 2014, 35, 6400-6411.	5.7	341
14	Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. Nano Letters, 2003, 3, 33-36.	4.5	318
15	Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chemistry of Materials, 2002, 14, 2113-2119.	3.2	312
16	Nanoparticles for Imaging, Sensing, and Therapeutic Intervention. ACS Nano, 2014, 8, 3107-3122.	7.3	255
17	CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes. Journal of the American Chemical Society, 2009, 131, 2948-2958.	6.6	247
18	Biodegradation of Iron Oxide Nanocubes: High-Resolution <i>In Situ</i> Monitoring. ACS Nano, 2013, 7, 3939-3952	7.3	233

#	Article	IF	CITATIONS
19	Heterodimers Based on CoPt3â^'Au Nanocrystals with Tunable Domain Size. Journal of the American Chemical Society, 2006, 128, 6690-6698.	6.6	202
20	Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups. Advanced Functional Materials, 2006, 16, 943-948.	7.8	202
21	Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators―of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268-4283.	7.3	200
22	Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews, 2021, 50, 11614-11667.	18.7	193
23	Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Advanced Functional Materials, 2018, 28, 1803660.	7.8	187
24	The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano, 2015, 9, 7925-7939.	7.3	180
25	One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePtâ^'lron Oxide Heterodimer Nanocrystals. Journal of the American Chemical Society, 2008, 130, 1477-1487.	6.6	179
26	From Binary Cu ₂ S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Composition <i>via</i> Partial Cation Exchange. ACS Nano, 2015, 9, 521-531.	7.3	173
27	Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano, 2016, 10, 7627-7638.	7.3	167
28	Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting. ACS Nano, 2011, 5, 1109-1121.	7.3	166
29	Co _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size. Chemistry of Materials, 2016, 28, 1769-1780.	3.2	142
30	Correlating Magneto-Structural Properties to Hyperthermia Performance of Highly Monodisperse Iron Oxide Nanoparticles Prepared by a Seeded-Growth Route. Chemistry of Materials, 2011, 23, 4170-4180.	3.2	134
31	Water solubilization of hydrophobic nanocrystals by means of poly(maleic) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 2	262 Td (anhyd $_{133}$
32	One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. Journal of Materials Chemistry B, 2014, 2, 4426.	2.9	127
33	Colloidal CuFeS ₂ Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. Chemistry of Materials, 2016, 28, 4848-4858.	3.2	126
34	Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11, 280-284.	6.2	124
35	Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives. Accounts of Chemical Research, 2018, 51, 999-1013.	7.6	122
36	Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. Nanoscale, 2015, 7, 570-576.	2.8	107

#	Article	IF	CITATIONS
37	Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance. ACS Nano, 2017, 11, 12121-12133.	7.3	106
38	Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. ACS Applied Materials & Interfaces, 2019, 11, 5727-5739.	4.0	104
39	Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Applied Materials & Interfaces, 2011, 3, 4024-4031.	4.0	103
40	"Nanohybrids―Based on pH-Responsive Hydrogels and Inorganic Nanoparticles for Drug Delivery and Sensor Applications. Nano Letters, 2011, 11, 3136-3141.	4.5	99
41	Multifunctional Nanostructures Based on Inorganic Nanoparticles and Oligothiophenes and Their Exploitation for Cellular Studies. Journal of the American Chemical Society, 2008, 130, 10545-10555.	6.6	98
42	Fluorescent-Magnetic Hybrid Nanostructures: Preparation, Properties, and Applications in Biology. IEEE Transactions on Nanobioscience, 2007, 6, 298-308.	2.2	96
43	Controlled Release of Doxorubicin Loaded within Magnetic Thermo-responsive Nanocarriers under Magnetic and Thermal Actuation in a Microfluidic Channel. ACS Nano, 2012, 6, 10535-10545.	7.3	91
44	Functionalization of Strongly Interacting Magnetic Nanocubes with (Thermo)Responsive Coating and Their Application in Hyperthermia and Heat-Triggered Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 10132-10145.	4.0	89
45	Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. Chemistry of Materials, 2015, 27, 7531-7537.	3.2	89
46	<i>In vivo</i> biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians. Nanomedicine, 2015, 10, 1911-1922.	1.7	85
47	Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. ACS Nano, 2017, 11, 6630-6640.	7.3	85
48	Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale, 2011, 3, 619-629.	2.8	84
49	Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale, 2013, 5, 11374.	2.8	84
50	Quantum dot-based cell motility assay. Differentiation, 2003, 71, 542-548.	1.0	82
51	Optimal Enhancement Configuration of Silica Nanoparticles for Ultrasound Imaging and Automatic Detection at Conventional Diagnostic Frequencies. Investigative Radiology, 2010, 45, 715-724.	3.5	82
52	Magnetic/Silica Nanocomposites as Dualâ€Mode Contrast Agents for Combined Magnetic Resonance Imaging and Ultrasonography. Advanced Functional Materials, 2011, 21, 2548-2555.	7.8	82
53	Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale, 2012, 4, 3319.	2.8	81
54	Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. Advanced Materials, 2020, 32, e2003712.	11.1	80

#	Article	IF	CITATIONS
55	Impact of Diabetes on Cardiac Sympathetic Innervation in Patients With Heart Failure. Diabetes Care, 2013, 36, 2395-2401.	4.3	79
56	A Cast-Mold Approach to Iron Oxide and Pt/Iron Oxide Nanocontainers and Nanoparticles with a Reactive Concave Surface. Journal of the American Chemical Society, 2011, 133, 2205-2217.	6.6	71
57	Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Physical Chemistry Chemical Physics, 2016, 18, 16848-16855.	1.3	68
58	Magnetic–Fluorescent Colloidal Nanobeads: Preparation and Exploitation in Cell Separation Experiments. Macromolecular Bioscience, 2009, 9, 952-958.	2.1	66
59	Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe ₃ S ₄) Nanoplatelets. Chemistry of Materials, 2011, 23, 3762-3768.	3.2	60
60	Magnetic Nanobeads Decorated with Silver Nanoparticles as Cytotoxic Agents and Photothermal Probes. Small, 2012, 8, 2731-2742.	5.2	58
61	Mesoscale Assemblies of Iron Oxide Nanocubes as Heat Mediators and Image Contrast Agents. Langmuir, 2015, 31, 808-816.	1.6	57
62	Colloidal Ordered Assemblies in a Polymer Shell—A Novel Type of Magnetic Nanobeads for Theranostic Applications. Chemistry of Materials, 2013, 25, 1055-1062.	3.2	56
63	Post-Synthesis Incorporation of ⁶⁴ Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Journal of the American Chemical Society, 2015, 137, 15145-15151.	6.6	56
64	Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles. Langmuir, 2010, 26, 10315-10324.	1.6	54
65	Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chemical Communications, 2012, 48, 2400.	2.2	54
66	Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano, 2015, 9, 11886-11897.	7.3	53
67	Fe ²⁺ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. Nano Letters, 2018, 18, 6856-6866.	4.5	53
68	Synthesis and Biological Assay of GSH Functionalized Fluorescent Quantum Dots for StainingHydra vulgaris. Bioconjugate Chemistry, 2007, 18, 829-835.	1.8	52
69	Three-dimensional cage-like microscaffolds for cell invasion studies. Scientific Reports, 2015, 5, 10531.	1.6	52
70	Non-covalent functionalization of carbon nano-onions with pyrene–BODIPY dyads for biological imaging. RSC Advances, 2015, 5, 50253-50258.	1.7	51
71	Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloids and Surfaces B: Biointerfaces, 2018, 161, 488-496.	2.5	51
72	Magnetic Nanocarriers with Tunable pH Dependence for Controlled Loading and Release of Cationic and Anionic Payloads. Advanced Materials, 2011, 23, 5645-5650.	11.1	46

#	Article	IF	CITATIONS
73	Copper-Triggered Aggregation of Ubiquitin. PLoS ONE, 2009, 4, e7052.	1.1	46
74	Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. Journal of Magnetism and Magnetic Materials, 2008, 320, e320-e323.	1.0	45
75	Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS Applied Materials & Interfaces, 2019, 11, 41957-41971.	4.0	44
76	Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra. PLoS ONE, 2009, 4, e7698.	1.1	44
77	Bioconjugation of Rod-Shaped Fluorescent Nanocrystals for Efficient Targeted Cell Labeling. Langmuir, 2009, 25, 12614-12622.	1.6	39
78	Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine. Nanoscale, 2011, 3, 5110.	2.8	39
79	Superparamagnetic cellulose fiber networks via nanocomposite functionalization. Journal of Materials Chemistry, 2012, 22, 1662-1666.	6.7	39
80	Rodâ€ S haped Nanocrystals Elicit Neuronal Activity In Vivo. Small, 2008, 4, 1747-1755.	5.2	38
81	Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1549-1557.	3.3	38
82	Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation. Scientific Reports, 2016, 6, 33295.	1.6	37
83	Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 275-286.	1.7	37
84	Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors. Nanomedicine, 2012, 7, 1713-1727.	1.7	35
85	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. Journal of Colloid and Interface Science, 2017, 502, 201-209.	5.0	35
86	Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells. ACS Applied Materials & Interfaces, 2021, 13, 15959-15972.	4.0	35
87	Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. Chemistry of Materials, 2019, 31, 5450-5463.	3.2	34
88	Switchable Anion Exchange in Polymer-Encapsulated APbX ₃ Nanocrystals Delivers Stable All-Perovskite White Emitters. ACS Energy Letters, 2021, 6, 2844-2853.	8.8	34
89	Novel synthesis of platinum complexes and their intracellular delivery to tumor cells by means of magnetic nanoparticles. Nanoscale, 2019, 11, 23482-23497.	2.8	33
90	Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo. Nanoscale, 2015, 7, 2336-2351.	2.8	27

#	Article	IF	CITATIONS
91	PEGylated gold nanorods as optical trackers for biomedical applications: an <i>in vivo</i> and <i>in vitro</i> comparative study. Nanotechnology, 2016, 27, 255101.	1.3	27
92	Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. Journal of Colloid and Interface Science, 2022, 607, 34-44.	5.0	27
93	Fluorescence resonance energy transfer induced by conjugation of metalloproteins to nanoparticles. Chemical Physics Letters, 2006, 417, 351-357.	1.2	22
94	A nanobiosensor to detect single hybridization events. Analyst, The, 2009, 134, 2458.	1.7	21
95	Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers, 2021, 13, 2735.	1.7	21
96	Dumbbell-like Au _{0.5} Cu _{0.5} @Fe ₃ O ₄ Nanocrystals: Synthesis, Characterization, and Catalytic Activity in CO Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 28624-28632.	4.0	20
97	Dually responsive gold–iron oxide heterodimers: merging stimuli-responsive surface properties with intrinsic inorganic material features. Nanoscale, 2018, 10, 3930-3944.	2.8	19
98	Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. ACS Applied Materials & Interfaces, 2018, 10, 20271-20280.	4.0	18
99	Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications. Nanoscale, 2021, 13, 13665-13680.	2.8	18
100	Measuring Cell Motility Using Quantum Dot Probes. , 2007, 374, 125-132.		17
101	Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters. Nanomaterials, 2021, 11, 62.	1.9	17
102	Oil Core–PEG Shell Nanocarriers for In Vivo MRI Imaging. Advanced Healthcare Materials, 2019, 8, e1801313.	3.9	16
103	Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. Pharmaceutics, 2021, 13, 1668.	2.0	15
104	Influence of Magnetic Scaffold Loading Patterns on Their Hyperthermic Potential Against Bone Tumors. IEEE Transactions on Biomedical Engineering, 2022, 69, 2029-2040.	2.5	15
105	Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents. Journal of Physical Chemistry C, 2015, 119, 6246-6253.	1.5	14
106	Quantum Dot-Based Cell Motility Assay. Science Signaling, 2005, 2005, pl5-pl5.	1.6	13
107	Rod-shaped nanostructures based on superparamagnetic nanocrystals as viscosity sensors in liquid. Journal of Applied Physics, 2011, 110, .	1.1	13
108	Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools. Bioconjugate Chemistry, 2017, 28, 2707-2714.	1.8	13

#	Article	IF	CITATIONS
109	Forced―and Selfâ€Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum. Small, 2017, 13, 1701274.	5.2	13
110	Crosslinked pH-responsive polymersome via Diels-Alder click chemistry: A reversible pH-dependent vesicular nanosystem. Polymer, 2019, 165, 19-27.	1.8	13
111	Fe ₃ O ₄ @Au@Cu _{2â^`} <i>_x</i> S Heterostructures Designed for Triâ€Modal Therapy: Photo―Magnetic Hyperthermia and ⁶⁴ Cu Radioâ€Insertion. Small, 2022, 18, e2200174.	5.2	12
112	Cation Exchange Protocols to Radiolabel Aqueous Stabilized ZnS, ZnSe, and CuFeS ₂ Nanocrystals with ⁶⁴ Cu for Dual Radio†and Photoâ€Thermal Therapy. Advanced Functional Materials, 2020, 30, 2002362.	7.8	11
113	Multilayered Magnetic Nanobeads for the Delivery of Peptides Molecules Triggered by Intracellular Proteases. ACS Applied Materials & Interfaces, 2017, 9, 35095-35104.	4.0	9
114	CdSe/CdS Semiconductor Quantum Rods as Robust Fluorescent Probes for Paraffin-Embedded Tissue Imaging. IEEE Transactions on Nanobioscience, 2011, 10, 209-215.	2.2	8
115	Magnetic-Field-Induced Formation of Superparamagnetic Microwires in Suspension. Journal of Physical Chemistry C, 2014, 118, 28220-28226.	1.5	8
116	Immunocytochemistry, Electron Tomography, and Energy Dispersive X-ray Spectroscopy (EDXS) on Cryosections of Human Cancer Cells Doped with Stimuli Responsive Polymeric Nanogels Loaded with Iron Oxide Nanoparticles. Methods in Molecular Biology, 2013, 1025, 179-198.	0.4	7
117	Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac 123I-MIBG study. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1601-1611.	3.3	7
118	Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zigâ€Zag Chains via In Situ TEM Imaging in Liquid. Small, 2020, 16, e1907419.	5.2	6
119	Photo-induced copper mediated copolymerization of activated-ester methacrylate polymers and their use as reactive precursors to prepare multi-dentate ligands for the water transfer of inorganic nanoparticles. Polymer Chemistry, 2020, 11, 2969-2985.	1.9	6
120	Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach. ACS Chemical Neuroscience, 2019, 10, 618-627.	1.7	5
121	SELECTIVE TRANSITION METAL EXTRACTION BY REVERSE MICELLES. Annali Di Chimica, 2004, 94, 33-44.	0.6	1
122	An <i>ab initio</i> study of the magnetic–metallic CoPt ₃ –Au interfaces. Journal of Physics Condensed Matter, 2009, 21, 015001.	0.7	1
123	Magnetically active polymeric nanocomposites for two-photon stereolithography. , 2014, , .		1
124	Antibody-Functionalized Inorganic NPs: Mimicking Nature for Targeted Diagnosis and Therapy. , 2014, , 1-28.		1
125	Manipulating the morphology of the nano oxide domain in AuCu–iron oxide dumbbell-like nanocomposites as a tool to modify magnetic properties. RSC Advances, 2018, 8, 22411-22421.	1.7	1

126 Nanofabricated 3D cage-like structures for cancer cell discrimination. , 2015, , .

0

#	Article	IF	CITATIONS
127	Fluorescent Nanocrystals and Proteins. Nanostructure Science and Technology, 2009, , 225-254.	0.1	0