Kazuhito Toyo-oka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2477591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KIFC1 Regulates the Trajectory of Neuronal Migration. Journal of Neuroscience, 2022, 42, 2149-2165.	3.6	8
2	Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sciences, 2022, 12, 56.	2.3	6
3	Glutathione S-transferase Pi (Gstp) proteins regulate neuritogenesis in the developing cerebral cortex. Human Molecular Genetics, 2021, 30, 30-45.	2.9	7
4	High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Scientific Reports, 2021, 11, 8156.	3.3	12
5	Rpsa Signaling Regulates Cortical Neuronal Morphogenesis via Its Ligand, PEDF, and Plasma Membrane Interaction Partner, Itga6. Cerebral Cortex, 2021, , .	2.9	6
6	TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity. Journal of Clinical Investigation, 2021, 131, .	8.2	42
7	Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cellular and Molecular Life Sciences, 2020, 77, 1511-1530.	5.4	19
8	Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Frontiers in Genetics, 2018, 9, 80.	2.3	51
9	Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radical Biology and Medicine, 2018, 129, 600-607.	2.9	10
10	Complete ablation of the 14-3-3epsilon protein results in multiple defects in neuropsychiatric behaviors. Behavioural Brain Research, 2017, 319, 31-36.	2.2	18
11	14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Frontiers in Molecular Neuroscience, 2017, 10, 318.	2.9	104
12	Regulation of neuronal morphogenesis by 14-3-3epsilon (<i>Ywhae</i>) via the microtubule binding protein, doublecortin. Human Molecular Genetics, 2016, 25, 4405-4418.	2.9	45
13	Overexpression of the 14-3-3gamma protein in embryonic mice results in neuronal migration delay in the developing cerebral cortex. Neuroscience Letters, 2016, 628, 40-46.	2.1	15
14	Deficiency of 14-3-3ε and 14-3-3ζ by the Wnt1 promoter-driven Cre recombinase results in pigmentation defects. BMC Research Notes, 2016, 9, 180.	1.4	7
15	Ablation of the 14â€3â€3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex. Developmental Neurobiology, 2016, 76, 600-614.	3.0	27
16	14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain. Journal of Neuroscience, 2014, 34, 12168-12181.	3.6	102
17	14-3-3ε Plays a Role in Cardiac Ventricular Compaction by Regulating the Cardiomyocyte Cell Cycle. Molecular and Cellular Biology, 2012, 32, 5089-5102.	2.3	44
18	Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3î¶ deficiency. Molecular Psychiatry, 2012, 17, 451-466.	7.9	95

ΚΑΖUΗΙΤΟ ΤΟΥΟ-ΟΚΑ

#	Article	IF	CITATIONS
19	Neuroepithelial Stem Cell Proliferation Requires LIS1 for Precise Spindle Orientation and Symmetric Division. Cell, 2008, 132, 474-486.	28.9	254
20	Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation. Journal of Cell Biology, 2008, 180, 1133-1147.	5.2	69
21	Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Human Molecular Genetics, 2008, 17, 3212-3222.	2.9	97
22	NDEL1 Phosphorylation by Aurora-A Kinase Is Essential for Centrosomal Maturation, Separation, and TACC3 Recruitment. Molecular and Cellular Biology, 2007, 27, 352-367.	2.3	128
23	Mnt-Deficient Mammary Glands Exhibit Impaired Involution and Tumors with Characteristics of Myc Overexpression. Cancer Research, 2006, 66, 5565-5573.	0.9	37
24	Complete Loss of <i>Ndel1</i> Results in Neuronal Migration Defects and Early Embryonic Lethality. Molecular and Cellular Biology, 2005, 25, 7812-7827.	2.3	149
25	Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Human Molecular Genetics, 2005, 14, 3113-3128.	2.9	91
26	Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller-Dieker syndrome. Human Molecular Genetics, 2004, 13, 1057-1067.	2.9	51
27	Evidence of Mnt-Myc Antagonism Revealed by Mnt Gene Deletion. Cell Cycle, 2004, 3, 95-97.	2.6	13
28	14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome. Nature Genetics, 2003, 34, 274-285.	21.4	374
29	Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis. EMBO Journal, 2003, 22, 4584-4596.	7.8	78
30	Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3. American Journal of Human Genetics, 2003, 72, 918-930.	6.2	215
31	Miller-Dieker Syndrome: Analysis of a Human Contiguous Gene Syndrome in the Mouse. American Journal of Human Genetics, 2003, 73, 475-488.	6.2	36
32	Reversible CD8 expression induced by common cytokine receptor Î ³ chain-dependent cytokines in a cloned CD4+ Th1 cell line. International Immunology, 2002, 14, 259-266.	4.0	0
33	Functional annotation of a full-length mouse cDNA collection. Nature, 2001, 409, 685-690.	27.8	653
34	TBX1 Is Responsible for Cardiovascular Defects in Velo-Cardio-Facial/DiGeorge Syndrome. Cell, 2001, 104, 619-629.	28.9	884
35	Non-CD28 Costimulatory Molecules Present in T Cell Rafts Induce T Cell Costimulation by Enhancing the Association of TCR with Rafts. Journal of Immunology, 2000, 164, 1251-1259.	0.8	141
36	CD5 Costimulation Up-Regulates the Signaling to Extracellular Signal-Regulated Kinase Activation in CD4+CD8+ Thymocytes and Supports Their Differentiation to the CD4 Lineage. Journal of Immunology, 2000, 164, 1260-1268.	0.8	19

Казиніто Тоуо-ока

#	Article	IF	CITATIONS
37	Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association. International Immunology, 1999, 11, 2043-2052.	4.0	42
38	A fundamental difference in the capacity to induce proliferation of naive T cells between CD28 and other co-stimulatory molecules. European Journal of Immunology, 1998, 28, 926-935.	2.9	53
39	A caspase inhibitor protects thymocytes from diverse signal-mediated apoptosis but not from clonal deletion in fetal thymus organ culture1This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.1. Immunology Letters, 1998, 63, 83-89.	2.5	7
40	Synergy between CD28 and CD9 costimulation for naive T-cell activation. Immunology Letters, 1997, 58, 19-23.	2.5	16
41	SUPPRESSION OF ALLOGRAFT RESPONSES INDUCED BY INTERLEUKIN-6, WHICH SELECTIVELY MODULATES INTERFERON-?? BUT NOT INTERLEUKIN-2 PRODUCTION1. Transplantation, 1997, 64, 757-763.	1.0	10
42	A role for CD9 molecules in T cell activation Journal of Experimental Medicine, 1996, 184, 753-758.	8.5	93
43	CD28 co-stimulatory signals induce IL-2 receptor expression on antigen-stimulated virgin T cells by an IL-2-independent mechanism. International Immunology, 1996, 8, 159-169.	4.0	17
44	Suppression of allograft responses by combining alloantigen-specific i.v. pre-sensitization with suboptimal doses of rapamycin. International Immunology, 1994, 6, 93-99.	4.0	8