Xiao-Xia Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2477350/publications.pdf Version: 2024-02-01

Χιλο-Χιλ Γιμ

#	Article	IF	CITATIONS
1	Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries. Chemical Engineering Journal, 2022, 427, 131988.	6.6	40
2	Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chemical Engineering Journal, 2022, 428, 131283.	6.6	43
3	Disproportionation enabling reversible MnO2/Mn2+ transformation in a mild aqueous Zn-MnO2 hybrid battery. Chemical Engineering Journal, 2022, 430, 133064.	6.6	33
4	Regulating the electro-deposition behavior of Fe metal anode and the applications in rechargeable aqueous iron-iodine batteries. Chemical Engineering Journal, 2022, 432, 134389.	6.6	12
5	Protonating imine sites of polyaniline for aqueous zinc batteries. Chemical Communications, 2022, 58, 1693-1696.	2.2	17
6	Enabling Reversible MnO ₂ /Mn ²⁺ Transformation by Al ³⁺ Addition for Aqueous Zn–MnO ₂ Hybrid Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10526-10534.	4.0	20
7	Decavanadate Doped Polyaniline for Aqueous Zinc Batteries. Small, 2022, 18, e2107689.	5.2	32
8	The back-deposition of dissolved Mn ²⁺ to MnO ₂ cathodes for stable cycling in aqueous zinc batteries. Chemical Communications, 2022, 58, 4845-4848.	2.2	3
9	High-Voltage Manganese Oxide Cathode with Two-Electron Transfer Enabled by a Phosphate Proton Reservoir for Aqueous Zinc Batteries. ACS Energy Letters, 2022, 7, 1814-1819.	8.8	33
10	Ammoniumâ€lon Storage Using Electrodeposited Manganese Oxides. Angewandte Chemie - International Edition, 2021, 60, 5718-5722.	7.2	155
11	The energy storage behavior of a phosphate-based cathode material in rechargeable zinc batteries. Chemical Communications, 2021, 57, 6253-6256.	2.2	10
12	Ammoniumâ€lon Storage Using Electrodeposited Manganese Oxides. Angewandte Chemie, 2021, 133, 5782-5786.	1.6	26
13	A Manganese Phosphate Cathode for Longâ€Life Aqueous Energy Storage. Advanced Functional Materials, 2021, 31, 2100477.	7.8	31
14	The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chemical Engineering Journal, 2021, 419, 129659.	6.6	35
15	Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chemical Engineering Journal, 2021, 419, 129491.	6.6	45
16	Electrochemical <i>in situ</i> construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. Journal of Materials Chemistry A, 2020, 8, 1176-1183.	5.2	43
17	Activating the Highly Reversible Mo ⁴⁺ /Mo ⁵⁺ Redox Couple in Amorphous Molybdenum Oxide for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 48565-48571.	4.0	28
18	A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Letters, 2020, 12, 118.	14.4	146

Χιάο-Χια Liu

#	Article	IF	CITATIONS
19	Heterojunction induced activation of iron oxide anode for high-power aqueous batteries. Chemical Engineering Journal, 2020, 400, 125874.	6.6	21
20	Frontispiece: The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, .	1.7	0
21	The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, 8190-8204.	1.7	21
22	Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors. Nanomaterials, 2019, 9, 1110.	1.9	21
23	A polyanionic molybdenophosphate anode for a 2.7â€V aqueous pseudocapacitor. Nano Energy, 2019, 65, 104010.	8.2	55
24	A Zn(ClO ₄) ₂ Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42000-42005.	4.0	111
25	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie, 2019, 131, 16203-16207.	2 1.6	6
26	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie - International Edition, 2019, 58, 16057-16061.	2 7.2	125
27	3D Exfoliated Carbon Paper toward Highly Loaded Aqueous Energy Storage Applications. Energy Technology, 2019, 7, 1900892.	1.8	9
28	Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochimica Acta, 2019, 325, 134877.	2.6	20
29	Boosting the pseudocapacitance of nitrogen-rich carbon nanorod arrays for electrochemical capacitors. Journal of Materials Chemistry A, 2019, 7, 12086-12094.	5.2	32
30	Strongly coupled polypyrrole/molybdenum oxide hybrid films <i>via</i> electrochemical layer-by-layer assembly for pseudocapacitors. Journal of Materials Chemistry A, 2019, 7, 9815-9821.	5.2	28
31	Immobilization of phosphotungstate through doping in polypyrrole for supercapacitors. Dalton Transactions, 2019, 48, 6812-6816.	1.6	8
32	A high performance tungsten bronze electrode in a mixed electrolyte and applications in supercapacitors. Chemical Communications, 2019, 55, 14323-14326.	2.2	7
33	Boosting operating voltage of vanadium oxide-based symmetric aqueous supercapacitor to 2†V. Chemical Engineering Journal, 2019, 358, 1529-1538.	6.6	39
34	Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor. Journal of Power Sources, 2018, 383, 17-23.	4.0	17
35	Hybrid Iron Oxide on Threeâ€Dimensional Exfoliated Graphite Electrode with Ultrahigh Capacitance for Energy Storage Applications. ChemElectroChem, 2018, 5, 1501-1508.	1.7	8
36	Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotubes in carbon nanotube film for supercapacitor. Chemical Engineering Journal, 2018, 337, 552-559.	6.6	77

XIAO-XIA LIU

#	Article	IF	CITATIONS
37	Nitrogen-doped carbon "spider webs―derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage. Journal of Materials Research, 2018, 33, 1109-1119.	1.2	16
38	High Mass Loading MnO ₂ with Hierarchical Nanostructures for Supercapacitors. ACS Nano, 2018, 12, 3557-3567.	7.3	447
39	The construction of a sandwich structured Co ₃ O ₄ @C@PPy electrode for improving pseudocapacitive storage. RSC Advances, 2018, 8, 33374-33382.	1.7	15
40	Engineering of Mesoscale Pores in Balancing Mass Loading and Rate Capability of Hematite Films for Electrochemical Capacitors. Advanced Energy Materials, 2018, 8, 1801784.	10.2	97
41	VO <i>_x</i> @MoO ₃ Nanorod Composite for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803901.	7.8	52
42	Morphology engineering of electro-deposited iron oxides for aqueous rechargeable Ni/Fe battery applications. Chemical Engineering Journal, 2018, 354, 672-679.	6.6	22
43	Highly loaded manganese oxide with high rate capability for capacitive applications. Journal of Power Sources, 2018, 396, 238-245.	4.0	19
44	Amorphous Mixedâ€Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability. Small, 2017, 13, 1700067.	5.2	119
45	Concurrent electropolymerization of aniline and electrochemical deposition of tungsten oxide for supercapacitor. Journal of Power Sources, 2017, 342, 980-989.	4.0	38
46	Electrochemical Growth of Polyaniline Nanowire Arrays on Graphene Sheets in Partially Exfoliated Graphite Foil for High-Performance Supercapacitive Materials. Electrochimica Acta, 2017, 240, 72-79.	2.6	27
47	Electrochemical deposition of honeycomb magnetite on partially exfoliated graphite as anode for capacitive applications. Journal of Power Sources, 2017, 359, 57-63.	4.0	14
48	Amorphous NiFe(oxy)hydroxide nanosheet integrated partially exfoliated graphite foil for high efficiency oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24208-24216.	5.2	63
49	Rate capability improvement of Coâ^'Ni double hydroxides integrated in cathodically partially exfoliated graphite. Journal of Power Sources, 2017, 365, 126-133.	4.0	29
50	Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 2017, 9, 13119-13127.	2.8	108
51	Ostwald Ripening Improves Rate Capability of High Mass Loading Manganese Oxide for Supercapacitors. ACS Energy Letters, 2017, 2, 1752-1759.	8.8	146
52	Tri-layered graphite foil for electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 7683-7688.	5.2	43
53	Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. Journal of Power Sources, 2016, 324, 788-797.	4.0	72
54	Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Advanced Functional Materials, 2015, 25, 4626-4632.	7.8	234

ΧΙΑΟ-ΧΙΑ LIU

#	Article	IF	CITATIONS
55	Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. Journal of Materials Chemistry A, 2015, 3, 14712-14720.	5.2	65
56	Loading of a Coordination Polymer Nanobelt on a Functional Carbon Fiber: A Feasible Strategy for Visibleâ€Lightâ€Active and Highly Efficient Coordinationâ€Polymerâ€Based Photocatalysts. Chemistry - A European Journal, 2015, 21, 3821-3830.	1.7	25
57	Controlled partial-exfoliation of graphite foil and integration with MnO2nanosheets for electrochemical capacitors. Nanoscale, 2015, 7, 3581-3587.	2.8	91
58	Density, dynamic viscosity, and electrical conductivity of two hydrophobic functionalized ionic liquids. Journal of Chemical Thermodynamics, 2015, 90, 39-45.	1.0	39
59	Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode. ACS Applied Materials & Interfaces, 2015, 7, 25506-25513.	4.0	92
60	Self-doped polyaniline/molybdenum oxide composite nanorods for supercapacitors. RSC Advances, 2015, 5, 75374-75379.	1.7	12
61	Molar heat capacity and thermodynamic properties of N-alklypyridinium hexafluorophosphate salts, [Cnpy][PF6] (n=2, 3, 5). Journal of Chemical Thermodynamics, 2014, 68, 82-89.	1.0	10
62	Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. Journal of Power Sources, 2014, 249, 48-58.	4.0	154
63	Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10882-10888.	5.2	165
64	Photocatalytic activity of transition-metal-ion-doped coordination polymer (CP): photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs. Dalton Transactions, 2014, 43, 8805-8813.	1.6	40
65	Synthesis, structural characterization, and photocatalytic study of transition metal coordination polymers constructed from mixed ligands. Journal of Coordination Chemistry, 2014, 67, 2301-2311.	0.8	3
66	Electrochemical Codeposition of Vanadium Oxide and Polypyrrole for High-Performance Supercapacitor with High Working Voltage. ACS Applied Materials & Interfaces, 2014, 6, 12656-12664.	4.0	120
67	Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. Journal of Chemical Thermodynamics, 2013, 66, 88-94.	1.0	48
68	High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale, 2013, 5, 7984.	2.8	253
69	Thermodynamic Properties of a New Hydrophobic Amide-Based Task-Specific Ionic Liquid [EimCH ₂ CONHBu][NTf ₂]. Journal of Chemical & Engineering Data, 2013, 58, 93-98.	1.0	11
70	Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers. Dalton Transactions, 2013, 42, 4031.	1.6	20
71	Theoretical study on polyaniline gas sensors: Examinations of response mechanism for alcohol. Synthetic Metals, 2012, 162, 862-867.	2.1	27
72	Density, Electrical Conductivity, and Dynamic Viscosity of <i>N</i> -Alkyl-4-methylpyridinium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data, 2012, 57, 2999-3004.	1.0	21

ΧΙΑΟ-ΧΙΑ LIU

#	Article	IF	CITATIONS
73	A FIRST PRINCIPLE ANALYSIS ON THE STRUCTURAL AND PHOTO-INDUCED CHARGE TRANSFER IN RUTHENIUM COMPLEXES OF HEXAAZATRIPHENYLENE. Journal of Theoretical and Computational Chemistry, 2012, 11, 895-905.	1.8	5
74	Self-doped polyaniline on functionalized carbon cloth as electroactive materials for supercapacitor. Electrochimica Acta, 2012, 64, 17-22.	2.6	111
75	Synthesis, Characterization and Fluorescent Property of Two Mixed Ligand Coordination Polymers Constructed from 4-Cyclohexene-1,2-dicarboxylate and Nitrogen-Containing Ligands. Journal of Chemical Crystallography, 2011, 41, 453-457.	0.5	1
76	Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. Journal of Power Sources, 2011, 196, 5209-5214.	4.0	102
77	Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon, 2011, 49, 3488-3496.	5.4	260
78	Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. Journal of Power Sources, 2011, 196, 1608-1614.	4.0	55
79	Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. Journal of Power Sources, 2011, 196, 4842-4848.	4.0	115
80	One-dimensional growth and electrochemical properties of polyaniline deposited by a pulse potentiostatic method. Electrochimica Acta, 2010, 55, 7175-7181.	2.6	31
81	Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. Journal of Power Sources, 2010, 195, 3742-3747.	4.0	192
82	Electrochemical codeposition of nickel oxide and polyaniline. Journal of Solid State Electrochemistry, 2010, 14, 1-7.	1.2	30
83	Influence of the zero dispersion wavelength fluctuation on the gain and noise performance in dual-pump fiber parametric amplifiers. Optoelectronics Letters, 2010, 6, 367-370.	0.4	2
84	Synthesis, crystal structure of ruthenium 1,2-naphthoquinone-1-oxime complex and its mediated CC coupling reactions of terminal alkynes. Chinese Journal of Chemistry, 2010, 21, 1315-1319.	2.6	5
85	Encapsulation of polyaniline in 3-D interconnected mesopores of silica KIT-6. Journal of Colloid and Interface Science, 2010, 341, 353-358.	5.0	39
86	Syntheses, characterizations and theoretical calculations of rhodium(III) 1,2-naphthoquinone-1-oxime complexes. Inorganica Chimica Acta, 2010, 363, 949-956.	1.2	7
87	Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate. Electrochimica Acta, 2010, 55, 3915-3920.	2.6	60
88	Humidity sensors based on polyaniline nanofibres. Sensors and Actuators B: Chemical, 2010, 143, 530-534.	4.0	179
89	Immobilization of molybdenum oxide in polyaniline and electrocatalytic properties of the composite modified electrode. Sensors and Actuators B: Chemical, 2010, 147, 73-77.	4.0	15
90	Self-assembly of reduced molybdophosphate-based supramolecular architectures and the study of their magnetic properties. Transition Metal Chemistry, 2009, 34, 571-577.	0.7	1

ΧΙΑΟ-ΧΙΑ LIU

#	Article	IF	CITATIONS
91	Synthesis, characterization and magnetic properties of coordination polymers of manganese with 1,1′-biphenyl-2,2′-dicarboxylic acid ligands. Transition Metal Chemistry, 2009, 34, 827-833.	0.7	2
92	pH-controlled morphological structure of polyaniline during electrochemical deposition. Electrochimica Acta, 2009, 54, 6172-6177.	2.6	59
93	Mixed-ligand coordination polymers constructed from flexible 2,2′-biphenyldicarboxylate and rigid isomeric bipyridines. Polyhedron, 2009, 28, 2997-3004.	1.0	4
94	Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochimica Acta, 2008, 53, 3036-3042.	2.6	96
95	Chemical anchoring of silica nanoparticles onto polyaniline chains via electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of SiO2. Electrochimica Acta, 2008, 53, 4693-4698.	2.6	22
96	Electrodeposition of hybrid film of polyaniline/silica and its pseudocapacitive properties. Journal of Solid State Electrochemistry, 2008, 12, 909-912.	1.2	8
97	Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies. European Polymer Journal, 2008, 44, 219-224.	2.6	57
98	Electrochemical De-/Intercalation of Silver for Ag[sub 2]NiO[sub 2] and AgNiO[sub 2]. Journal of the Electrochemical Society, 2008, 155, E1.	1.3	5
99	Electrodeposition of NiOx/PANI composite film and its catalytic properties towards electrooxidations of polyhydroxyl compounds. Journal of Applied Polymer Science, 2007, 105, 2260-2264.	1.3	17
100	Composite films of polyaniline and molybdenum oxide formed by electrocodeposition in aqueous media. Journal of Solid State Electrochemistry, 2007, 11, 1279-1286.	1.2	44
101	Electrosynthesis of Polyaniline/SiO2 Composite at high pH in the Absence of Extra Supporting Electrolyte. Polymer Bulletin, 2006, 57, 825-832.	1.7	19
102	Study on Tribological Properties of Polytetrafluoroethylene Drawn Uniaxially at Different Temperature. Macromolecular Materials and Engineering, 2005, 290, 172-178.	1.7	7
103	Electropolymerization of aniline in aqueous solutions at pH 2 to 12. Journal of Materials Science, 2005, 40, 4511-4515.	1.7	42
104	Synthesis, Characterisation and Electrochemical Behaviour of Rhodium(III) Complexes Containing 1,2-Naphthoquinone-2-oxime and Formation of Imine Complexes through Nâ^'O Bond Cleavage. European Journal of Inorganic Chemistry, 2001, 2001, 511-520.	1.0	10
105	Synthesis, characterisation and co-polymerisation of ruthenium 1,2-naphthoquinone-1-oxime complexes containing 4-vinylpyridine ligands. Inorganica Chimica Acta, 2001, 312, 231-238.	1.2	3
106	Synthesis and structural characterization of ruthenium nitrosonaphthol complexes incorporating pendant pyridyl ligands. Inorganica Chimica Acta, 2000, 299, 16-27.	1.2	7
107	Synthesis, characterization and crystal structure of a series of ruthenium nitrosonaphthol complexes. Polyhedron, 2000, 19, 7-21.	1.0	10