
Li Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2477115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A controlled synthesis method of alkyl methacrylate block copolymers <i>via</i> living anionic polymerization at ambient temperature. RSC Advances, 2019, 9, 16049-16056.	3.6	5
2	Anionic living polymerization of alkyl methacrylate at ambient temperature and its mechanism research. Journal of Polymer Science Part A, 2019, 57, 1130-1139.	2.3	3
3	Synthesis of Block Copolymers of 2â€Ethylhexyl Methacrylate, <i>n</i> â€Hexyl Methacrylate and Methyl Methacrylate <i>via</i> Anionic Polymerization at Ambient Temperature. Chinese Journal of Chemistry, 2018, 36, 934-938.	4.9	3
4	A controlled synthesis method of polystyrene-b-polyisoprene-b-poly(methyl methacrylate) copolymer via anionic polymerization with trace amounts of THF having potential of a commercial scale. RSC Advances, 2017, 7, 9933-9940.	3.6	10
5	Synthesis of poly(<i>n</i> -hexyl methacrylate)- <i>b</i> -poly(methyl methacrylate) <i>via</i> anionic polymerization with <i>t</i> -BuOK as the initiator at ambient temperature. RSC Advances, 2017, 7, 53996-54001.	3.6	7
6	A Novel Efficient Ligand in Anionic Polymerization at Elevated Temperature. Chinese Journal of Chemistry, 2014, 32, 1128-1134.	4.9	5