List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2476481/publications.pdf Version: 2024-02-01

LIE SONG

#	Article	IF	CITATIONS
1	Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Physical Review A, 2014, 89, .	1.0	132
2	Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Physical Review A, 2015, 91, .	1.0	124
3	Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Physical Review A, 2014, 89, .	1.0	116
4	Dielectric Huygens' Metasurface for High-Efficiency Hologram Operating in Transmission Mode. Scientific Reports, 2016, 6, 30613.	1.6	113
5	Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Physical Review A, 2016, 93, .	1.0	93
6	Fast preparation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>W</mml:mi> states with superconducting quantum interference devices by using dressed states. Physical Review A, 2016, 94, .</mml:math 	1.0	77
7	Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors. Applied Physics Letters, 2008, 92, .	1.5	68
8	Teleportation of an N-photon Greenberger-Horne-Zeilinger (GHZ) polarization-entangled state using linear optical elements. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A1.	0.9	63
9	Nonadiabatic holonomic quantum computation using Rydberg blockade. Physical Review A, 2018, 97, .	1.0	63
10	Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving. Scientific Reports, 2015, 5, 15616.	1.6	57
11	Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Europhysics Letters, 2007, 80, 60001.	0.7	56
12	Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1029.	0.9	44
13	Fast generation of three-atom singlet state by transitionless quantum driving. Scientific Reports, 2016, 6, 22202.	1.6	44
14	Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states' preparation and transition. Laser Physics Letters, 2014, 11, 115201.	0.6	43
15	Fast generation of W states of superconducting qubits with multiple SchrĶdinger dynamics. Scientific Reports, 2016, 6, 36737.	1.6	43
16	Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Physical Review Research, 2022, 4, .	1.3	43
17	Reverse engineering of a Hamiltonian by designing the evolution operators. Scientific Reports, 2016, 6, 30151.	1.6	42
18	Flexible scheme for the implementation of nonadiabatic geometric quantum computation. Physical Review A, 2020, 101, .	1.0	42

#	Article	IF	CITATIONS
19	One-step generation of cluster state by adiabatic passage in coupled cavities. Applied Physics Letters, 2010, 96, .	1.5	40
20	Robust and high-fidelity nondestructive Rydberg parity meter. Physical Review A, 2020, 102, .	1.0	39
21	Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths. Physical Review A, 2019, 100, .	1.0	37
22	Two-Path Interference for Enantiomer-Selective State Transfer of Chiral Molecules. Physical Review Applied, 2020, 13, .	1.5	37
23	Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Physical Review A, 2017, 95, .	1.0	36
24	Fast quantum state engineering via universal SU(2) transformation. Physical Review A, 2017, 96, .	1.0	34
25	Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Physical Review A, 2017, 96, .	1.0	34
26	Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Physical Review A, 2018, 97, .	1.0	34
27	Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms. Physical Review A, 2018, 97, .	1.0	33
28	Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade. Physical Review A, 2020, 102, .	1.0	33
29	Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Information Processing, 2014, 13, 1967-1978.	1.0	31
30	Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Information Processing, 2016, 15, 2033-2052.	1.0	31
31	Resilient quantum gates on periodically driven Rydberg atoms. Physical Review A, 2021, 103, .	1.0	31
32	Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Optics Express, 2016, 24, 22847.	1.7	30
33	Quantum state transfer in spin chains via shortcuts to adiabaticity. Physical Review A, 2018, 97, .	1.0	30
34	Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping. Physical Review A, 2021, 103, .	1.0	29
35	The generation of acoustic Airy beam with selective band based on binary metasurfaces: Customized on demand. Applied Physics Letters, 2021, 119, .	1.5	28
36	Transitionless-based shortcuts for the fast and robust generation of W states. Optics Communications, 2016, 380, 140-147.	1.0	27

#	Article	IF	CITATIONS
37	Pulse design for multilevel systems by utilizing Lie transforms. Physical Review A, 2018, 97, .	1.0	27
38	Effective discrimination of chiral molecules in a cavity. Optics Letters, 2020, 45, 4952.	1.7	27
39	Direct conversion of a four-atomWstate to a Greenberger-Horne-Zeilinger state via a dissipative process. Physical Review A, 2013, 88, .	1.0	26
40	Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode. Physical Review A, 2019, 99, .	1.0	25
41	Arbitrary quantum state engineering in three-state systems via Counterdiabatic driving. Scientific Reports, 2016, 6, 38484.	1.6	25
42	Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 025503.	0.6	24
43	Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons. Journal of Applied Physics, 2011, 109, 103111.	1.1	24
44	An effective shortcut to adiabatic passage for fast quantum state transfer in a cavity quantum electronic dynamics system. Laser Physics, 2014, 24, 105201.	0.6	24
45	Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field. Optics Letters, 2020, 45, 1200.	1.7	24
46	Fast generating Greenberger–Horne–Zeilinger state via iterative interaction pictures. Laser Physics Letters, 2016, 13, 105202.	0.6	23
47	Quantum Fisher information in quantum critical systems with topological characterization. Physical Review B, 2019, 100, .	1.1	23
48	Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Information Processing, 2016, 15, 2359-2376.	1.0	22
49	Speeding up adiabatic passage by adding Lyapunov control. Physical Review A, 2017, 96, .	1.0	22
50	Deterministic conversions between Greenberger-Horne-Zeilinger states and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi> states of spin qubits via Lie-transform-based inverse Hamiltonian engineering. Physical Review A, 2019, 100, .</mml:math 	1.0	22
51	Broadband acoustic focusing via binary rectangular cavity/Helmholtz resonator metasurface. Journal of Applied Physics, 2021, 129, .	1.1	22
52	Multi-qubit phase gate on multiple resonators mediated by a superconducting bus. Optics Express, 2020, 28, 1954.	1.7	21
53	Enhanced Phonon Blockade in a Weakly Coupled Hybrid System via Mechanical Parametric Amplification. Physical Review Applied, 2022, 17, .	1.5	21
54	One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 468.	0.9	20

#	Article	IF	CITATIONS
55	Robust single-qubit gates by composite pulses in three-level systems. Physical Review A, 2021, 103, .	1.0	20
56	Systematic-Error-Tolerant Multiqubit Holonomic Entangling Gates. Physical Review Applied, 2021, 16, .	1.5	20
57	Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities. Physical Review A, 2011, 83, .	1.0	19
58	Dissipative preparation of multibody entanglement via quantum feedback control. Physical Review A, 2012, 86, .	1.0	19
59	Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Frontiers of Physics, 2022, 17, 1.	2.4	19
60	Pulse reverse engineering for controlling two-level quantum systems. Physical Review A, 2020, 101, .	1.0	17
61	Large-scale Greenberger-Horne-Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Physical Review A, 2021, 103, .	1.0	17
62	One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness. Photonics Research, 2021, 9, 814.	3.4	17
63	Discrimination of enantiomers through quantum interference and quantum Zeno effect. Optics Express, 2020, 28, 33475.	1.7	17
64	Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Information Processing, 2013, 12, 411-424.	1.0	16
65	Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Information Processing, 2015, 14, 2909-2928.	1.0	16
66	Coherent control in quantum open systems: An approach for accelerating dissipation-based quantum state generation. Physical Review A, 2017, 96, .	1.0	16
67	Resonant-interaction-induced Rydberg antiblockade and its applications. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126039.	0.9	16
68	Asymmetric acoustic beam shaping based on monolayer binary metasurfaces. Applied Physics Express, 2021, 14, 085504.	1.1	16
69	Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems. Physical Review A, 2016, 94, .	1.0	15
70	Accelerated and Noiseâ€Resistant Protocol of Dissipationâ€Based Knill–Laflamme–Milburn State Generation with Lyapunov Control. Annalen Der Physik, 2019, 531, 1900006.	0.9	15
71	Photonic topological Weyl degeneracies and ideal type-I Weyl points in the gyromagnetic metamaterials. Physical Review B, 2021, 103, .	1.1	15
72	Wavelength-selected bifunctional beam shaping for transmitted acoustic waves via coding metasurface. Applied Acoustics, 2022, 194, 108786.	1.7	15

#	Article	IF	CITATIONS
73	Deterministic generation of singlet states for \$\$N\$\$ N -atoms in coupled cavities via quantum Zeno dynamics. Quantum Information Processing, 2014, 13, 1857-1877.	1.0	14
74	Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks. Annalen Der Physik, 2017, 529, 1700154.	0.9	14
75	Fast coherent manipulation of quantum states in open systems. Optics Express, 2016, 24, 21674.	1.7	13
76	Effective schemes for preparation of Greenberger–Horne–Zeilinger and W maximally entangled states with cross-Kerr nonlinearity and parity-check measurement. Applied Physics B: Lasers and Optics, 2013, 110, 551-561.	1.1	12
77	Complete hyperentanglement-assisted multi-photon Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. Optics Communications, 2014, 317, 102-106.	1.0	12
78	Implementing stabilizer codes in noisy environments. Physical Review A, 2017, 96, .	1.0	12
79	Shortcut Scheme for Oneâ€Step Implementation of a Threeâ€Qubit Nonadiabatic Holonomic Gate. Annalen Der Physik, 2018, 530, 1800179.	0.9	12
80	Generation of nonclassical states in nonlinear oscillators via Lyapunov control. Physical Review A, 2020, 102, .	1.0	12
81	Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Information Processing, 2013, 12, 3771-3783.	1.0	11
82	Accelerating Population Transfer in a Transmon Qutrit Via Shortcuts to Adiabaticity. Annalen Der Physik, 2018, 530, 1700351.	0.9	11
83	Improving Shortcuts to Nonâ€Hermitian Adiabaticity for Fast Population Transfer in Open Quantum Systems. Annalen Der Physik, 2018, 530, 1700247.	0.9	11
84	Quantum coherence dynamics of three-qubit states in XY spin-chain environment. Quantum Information Processing, 2018, 17, 1.	1.0	11
85	Squeezingâ€Enhanced Atom–Cavity Interaction in Coupled Cavities with High Dissipation Rates. Annalen Der Physik, 2019, 531, 1900220.	0.9	11
86	Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Frontiers of Physics, 2022, 17, 1.	2.4	11
87	Fast controlled preparation of two-atom maximally entangled state and N-atom W state in the direct coupled cavity systems via shortcuts to adiabatic passage. European Physical Journal D, 2016, 70, 1.	0.6	10
88	Protecting Quantum State in Timeâ€Dependent Decoherenceâ€Free Subspaces Without the Rotatingâ€Wave Approximation. Annalen Der Physik, 2017, 529, 1700186.	0.9	10
89	Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments. Optics Express, 2017, 25, 10961.	1.7	10
90	Acoustic wavelength-selected metamaterials designed by reversed fractional stimulated Raman adiabatic passage. Physical Review B, 2022, 105, .	1.1	10

#	Article	IF	CITATIONS
91	Robust population inversion in three-level systems by composite pulses. Physical Review A, 2022, 105, .	1.0	10
92	Invariantâ€Based Pulse Design for Three‣evel Systems Without the Rotatingâ€Wave Approximation. Annalen Der Physik, 2017, 529, 1700004.	0.9	9
93	Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Information Processing, 2018, 17, 1.	1.0	9
94	Oneâ€Step Implementation of N â€Qubit Nonadiabatic Holonomic Quantum Gates with Superconducting Qubits via Inverse Hamiltonian Engineering. Annalen Der Physik, 2019, 531, 1800427.	0.9	9
95	Quantum criticality of quantum speed limit for a two-qubit system in the spin chain with the Dzyaloshinsky–Moriya interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 136-140.	0.9	9
96	Accelerated and Robust Generation of <i>W</i> State by Parametric Amplification and Inverse Hamiltonian Engineering. Annalen Der Physik, 2020, 532, 2000002.	0.9	9
97	The dynamics of entanglement and quantum discord of two atoms in coupled cavities. Journal of Modern Optics, 2012, 59, 387-392.	0.6	8
98	Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum Information Processing, 2013, 12, 3553-3568.	1.0	8
99	Generation of three-qubit Greenberger–Horne–Zeilinger state of superconducting qubits via transitionless quantum driving. Laser Physics, 2017, 27, 015202.	0.6	8
100	Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system. Quantum Information Processing, 2019, 18, 1.	1.0	8
101	Enhancing atom-field interaction in the reduced multiphoton Tavis-Cummings model. Physical Review A, 2020, 101, .	1.0	8
102	Tripartite high-dimensional magnon-photon entanglement in phases with broken <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT -symmetry of a non-Hermitian hybrid system. Physical Review B, 2022, 105</mml:mi </mml:math 	1.1	8
103	Coexistence of topological type-II Weyl and triply degenerate points in a chiral photonic metamaterial. Physical Review B, 2022, 105, .	1.1	8
104	Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	8
105	Functional Acoustic Metamaterial Using Shortcut to Adiabatic Passage in Acoustic Waveguide Couplers. Physical Review Applied, 2022, 18, .	1.5	8
106	Generalized Teleportation of a d-Level N-Particle GHZ State with One Pair of Entangled Particles asÂtheÂQuantum Channel. International Journal of Theoretical Physics, 2008, 47, 2835-2840.	0.5	7
107	Generalized remote preparation of the <i>d</i> -level <i>N</i> -particle GHZ state. Journal of Modern Optics, 2008, 55, 1723-1729	0.6	7
108	Noise-induced quantum state transfer in distant cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 175502.	0.6	7

#	Article	IF	CITATIONS
109	Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states. Quantum Information Processing, 2017, 16, 1.	1.0	7
110	Robust Generation of Logical Qubit Singlet States with Reverse Engineering and Optimal Control with Spin Qubits. Advanced Quantum Technologies, 2020, 3, 2000113.	1.8	7
111	Generation of <i>N</i> â€particle <i>W</i> State with Trapped Λâ€Type lons by Transitionless Quantum Driving. Annalen Der Physik, 2021, 533, 2000526.	0.9	7
112	Optimal Control for Robust Photon State Transfer in Optomechanical Systems. Annalen Der Physik, 2021, 533, 2000608.	0.9	7
113	Topological characteristic of Weyl degeneracies in a reciprocal chiral metamaterials system. New Journal of Physics, 2021, 23, 093036.	1.2	7
114	Noise resistance of Toffoli gate in an array of coupled cavities. Journal of Modern Optics, 2014, 61, 1290-1297.	0.6	6
115	Direct measurement on the geometric phase of a double quantum dot qubit via quantum point contact device. Scientific Reports, 2015, 5, 11726.	1.6	6
116	Quantum control with Lyapunov function and bang-bang solution in the optomechanics system. Frontiers of Physics, 2022, 17, 1.	2.4	6
117	Accelerated high-fidelity Bell states generation based on dissipation dynamics and Lyapunov control. Quantum Information Processing, 2021, 20, 1.	1.0	6
118	Chiral Discrimination via Shortcuts to Adiabaticity and Optimal Control. Annalen Der Physik, 0, , 2100573.	0.9	6
119	Quantum State Transfer via Parity Measurement. International Journal of Theoretical Physics, 2008, 47, 1294-1299.	0.5	5
120	Positive Protocol for Quantum Teleportation Using Photon Polarization-Entangled W-Type State as the Quantum Channel. International Journal of Theoretical Physics, 2012, 51, 3423-3431.	0.5	5
121	Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Information Processing, 2015, 14, 511-529.	1.0	5
122	One-step engineering many-atom NOON state. New Journal of Physics, 2018, 20, 093019.	1.2	5
123	Constructing multi-target controlled phase gate in circuit QED and its applications. Europhysics Letters, 2019, 127, 50002.	0.7	5
124	Accurate Parity Meter Based on Coherent State Measurement. Annalen Der Physik, 2022, 534, .	0.9	5
125	Broadband Controllable Asymmetric Accelerating Beam via Bilayer Binary Acoustic Metasurfaces. Annalen Der Physik, 2022, 534, .	0.9	5
126	Implementation of quantum state manipulation in a dissipative cavity. Scientific Reports, 2015, 5, 10656.	1.6	4

#	Article	IF	CITATIONS
127	One-step deterministic generation of <i>N</i> -atom Greenberger–Horne–Zeilinger states in separate coupled cavities via quantum Zeno dynamics. Journal of Modern Optics, 2015, 62, 1591-1599.	0.6	4
128	Measurement-induced multipartite entanglement for distant four-level atoms in Markovian and non-Markovian environments. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2044-2048.	0.9	4
129	Noise-resistant phase gates with amplitude modulation. Physical Review A, 2020, 102, .	1.0	4
130	Generation of three-dimensional entanglement between two antiblockade Rydberg atoms with detuning-compensation-induced effective resonance. Laser Physics, 2020, 30, 045201.	0.6	4
131	Quantum speed limit for a three-qubit system in spin-chain environment with multisite interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126309.	0.9	4
132	Effective scheme for preparation of multi-atom Greenberger–Horne–Zeilinger states in coupled cavities via adiabatic passage. Journal of Modern Optics, 2013, 60, 1349-1354.	0.6	3
133	Accelerating adiabatic quantum transfer for three-level <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si48.gif" display="inline" overflow="scroll"><mml:mi>û</mml:mi>-type structure systems via picture transformation. Annals of Physics. 2017. 379. 102-111.</mml:math 	1.0	3
134	Quantum correlations dynamics of three-qubit states coupled to an XY spin chain: Role of coupling strengths. Chinese Physics B, 2017, 26, 100501.	0.7	3
135	Implementation of Controlledâ€NOT Gate by Lyapunov Control. Annalen Der Physik, 2019, 531, 1900086.	0.9	3
136	Resilient MÃ,Imer-SÃ,rensen gate with cavity QED. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 388, 127033.	0.9	3
137	Quantum coherence and its distribution in the extended Ising chain. Quantum Information Processing, 2021, 20, 1.	1.0	3
138	Detecting a single atom in a cavity using the \ddot{i} ‡(2) nonlinear medium. Frontiers of Physics, 2022, 17, 1.	2.4	3
139	Controlled local implementation of nonlocal operations. Journal of Modern Optics, 2008, 55, 3063-3070.	0.6	2
140	Fast CNOT gate via shortcuts to adiabatic passage. Journal of Modern Optics, 2016, 63, 1943-1951.	0.6	2
141	Perfect quantum state engineering by the combination of the counterdiabatic driving and the reverse-engineering technique. Annals of Physics, 2017, 385, 40-56.	1.0	2
142	Generation of four-atom entangled decoherence-free states by interference of polarized photons. Journal of Modern Optics, 2009, 56, 1545-1549.	0.6	1
143	Quantum computation and entangled state generation through a cavity output process. Open Physics, 2011, 9, .	0.8	1
144	Emergence of multipartite optomechanical entanglement in microdisk cavities coupled to nanostring waveguide. Quantum Information Processing, 2013, 12, 3179-3190.	1.0	1

#	Article	IF	CITATIONS
145	High-fidelity generating multi-qubit W state via dressed states in the system of multiple resonators coupled with a superconducting qubit. Canadian Journal of Physics, 2018, 96, 81-89.	0.4	1
146	Efficient implementation of arbitrary quantum state engineering in four-state system by counterdiabatic driving. Laser Physics Letters, 2018, 15, 075201.	0.6	1
147	Shortcuts to Adiabatic Passage for Fast Generation of Entangled States in Directly Coupled Bimodal-Mode Cavitieseee. International Journal of Theoretical Physics, 2021, 60, 200-213.	0.5	1
148	Engineering distributed atomic NOON states via single-photon detection. Quantum Information Processing, 2021, 20, 1.	1.0	1
149	Tunable ultra-high quality factor graphene absorber based on semicylindrical silica array and distributed Bragg reflector structure. AIP Advances, 2022, 12, 055125.	0.6	1
150	QUANTUM TELEPORTATION VIA 1D OPTICAL LATTICE CHAINS WITH NONLINEAR COUPLING. International Journal of Quantum Information, 2008, 06, 1213-1222.	0.6	0
151	Optical protocol for quantum state sharing of superposed coherent state. Journal of Modern Optics, 2008, 55, 2071-2082.	0.6	0
152	A Direct Measurement Scheme of Two Quantum-Dot Qubits Quantum Correlation via Detector Current. International Journal of Theoretical Physics, 2012, 51, 2930-2942.	0.5	0
153	Effective scheme for enhancing entanglement in distant optomechanical system by injecting the atomic medium. Canadian Journal of Physics, 2013, 91, 146-152.	0.4	0
154	Effective preparation of the <i>N</i> -dimension spin Greenberger–Horne–Zeilinger state with quantum dots embedded in microcavities. Journal of Modern Optics, 0, , 1-10.	0.6	0
155	Manipulation of Multi‣evel Quantum Systems via Unsharp Measurements and Feedback Operations. Annalen Der Physik, 2019, 531, 1900063.	0.9	0
156	Controllable Dual Hybrid Tamm Plasmon Modes in Binary Gold Nanodisk Arrays and Distributed Bragg Reflector Structure. Plasmonics, 2019, 14, 1091-1098.	1.8	0