## Satoshi Semboshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2476472/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte. Applied Catalysis B: Environmental, 2009, 90, 255-261.                                                         | 10.8 | 78        |
| 2  | Visible light responses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodic oxidation. Applied Catalysis B: Environmental, 2009, 91, 152-156.                                                                          | 10.8 | 76        |
| 3  | Mechanical properties and microstructures of β Ti–25Nb–11Sn ternary alloy for biomedical<br>applications. Materials Science and Engineering C, 2013, 33, 1629-1635.                                                                            | 3.8  | 58        |
| 4  | Degradation of hydrogen absorbing capacity in cyclically hydrogenated TiMn2. Acta Materialia, 2001,<br>49, 927-935.                                                                                                                            | 3.8  | 55        |
| 5  | Microstructure and mechanical properties of Cu–3at.% Ti alloy aged in a hydrogen atmosphere.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2009, 517, 105-113.                     | 2.6  | 54        |
| 6  | Discontinuous precipitates in age-hardening CuNiSi alloys. Materials Characterization, 2016, 115, 39-45.                                                                                                                                       | 1.9  | 54        |
| 7  | Effect of aging in hydrogen atmosphere on electrical conductivity of Cu–3at.%Ti alloy. Journal of<br>Materials Research, 2008, 23, 473-477.                                                                                                    | 1.2  | 48        |
| 8  | Fabrication of high-strength and high-conductivity Cu–Ti alloy wire by aging in a hydrogen<br>atmosphere. Journal of Alloys and Compounds, 2013, 580, S397-S400.                                                                               | 2.8  | 47        |
| 9  | Extraction of precipitates from age-hardenable Cu–Ti alloys. Materials Characterization, 2013, 82, 23-31.                                                                                                                                      | 1.9  | 42        |
| 10 | Microstructure and superhydrophilicity of anodic TiO2 films on pure titanium. Thin Solid Films, 2008, 516, 7488-7496.                                                                                                                          | 0.8  | 38        |
| 11 | Microstructural evolution of Cu-1at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity. Ultramicroscopy, 2009, 109, 593-598.                                                                            | 0.8  | 36        |
| 12 | Effect of composition on hydrogen absorbing properties in binary TiMn2 based alloys. Journal of Alloys and Compounds, 2003, 352, 210-217.                                                                                                      | 2.8  | 34        |
| 13 | Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium-entropy brasses. Materials and Design, 2019, 181, 107900.                                                                                         | 3.3  | 34        |
| 14 | Effects of Aging Temperature on Electrical Conductivity and Hardness of Cu-3 at. pct Ti Alloy Aged in a<br>Hydrogen Atmosphere. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2011, 42, 2136-2143. | 1.1  | 31        |
| 15 | Aging behavior of Cu–Ti–Al alloy observed by transmission electron microscopy. Journal of Materials<br>Science, 2008, 43, 3761-3768.                                                                                                           | 1.7  | 30        |
| 16 | Photo-induced properties of anodic oxide films on Ti6Al4V. Thin Solid Films, 2012, 520, 4956-4964.                                                                                                                                             | 0.8  | 30        |
| 17 | Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry. Surface and Coatings Technology, 2012, 206, 2616-2621.                                                                          | 2.2  | 29        |
| 18 | Investigation of Precipitation Behavior in Age-Hardenable Cu-Ti Alloys by an Extraction-Based<br>Approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2014, 45, 3401-3411.                      | 1.1  | 29        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys.<br>Materials, 2017, 10, 415.                                                                                                                            | 1.3 | 27        |
| 20 | Visible light response of nitrogen and sulfur co-doped TiO2 photocatalysts fabricated by anodic oxidation. Catalysis Today, 2011, 164, 399-403.                                                                                                          | 2.2 | 26        |
| 21 | Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1501-1511.                                                    | 1.1 | 26        |
| 22 | Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys.<br>Materials, 2015, 8, 3467-3478.                                                                                                                        | 1.3 | 25        |
| 23 | Effect of Composition on the Strength and Electrical Conductivity of Cu-Ti Binary Alloy Wires<br>Fabricated by Aging and Intense Drawing. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2019, 50, 1389-1396. | 1.1 | 24        |
| 24 | Calcium-hydroxide slurry processing for bioactive calcium-titanate coating on titanium. Surface and<br>Coatings Technology, 2008, 202, 5110-5115.                                                                                                        | 2.2 | 23        |
| 25 | First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5.<br>Applied Physics Letters, 2011, 98, 221908.                                                                                                          | 1.5 | 22        |
| 26 | High Strength and High Electrical Conductivity Cu-Ti Alloy Wires Fabricated by Aging and Severe<br>Drawing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018,<br>49, 4956-4965.                               | 1.1 | 22        |
| 27 | Low Young's modulus of cold groove-rolled β Ti–Nb–Sn alloys for orthopedic applications. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021,<br>802, 140645.                                    | 2.6 | 22        |
| 28 | Effect of microstructure on hydrogen pulverization of two phase alloys. Intermetallics, 1998, 6, 61-69.                                                                                                                                                  | 1.8 | 21        |
| 29 | Laminates based on an iron aluminide intermetallic alloy and a CrMo steel. Intermetallics, 2005, 13, 717-726.                                                                                                                                            | 1.8 | 21        |
| 30 | A new concept of hip joint stem and its fabrication using metastable TiNbSn alloy. Journal of Alloys<br>and Compounds, 2012, 536, S582-S585.                                                                                                             | 2.8 | 21        |
| 31 | In-Situ Transmission Electron Microscopy Observation on the Phase Transformation of Ti-Nb-Sn Shape<br>Memory Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2008, 39, 2820-2829.                      | 1.1 | 20        |
| 32 | Age-hardening behavior of a single-crystal Cu–ti alloy. Materials Letters, 2014, 131, 90-93.                                                                                                                                                             | 1.3 | 20        |
| 33 | Photo-induced characteristics of a Ti–Nb–Sn biometallic alloy with low Young's modulus. Thin Solid<br>Films, 2010, 519, 276-283.                                                                                                                         | 0.8 | 19        |
| 34 | Aging of Copper-Titanium Dilute Alloys in Hydrogen Atmosphere: Influence of Prior-Deformation on Strength and Electrical Conductivity. Materials Transactions, 2011, 52, 2137-2142.                                                                      | 0.4 | 19        |
| 35 | Hardening of Al–Cu–Mg alloy by energetic ion irradiation. Journal of Nuclear Materials, 2011, 408, 201-204.                                                                                                                                              | 1.3 | 17        |
| 36 | Hydrogenation-induced fragmentation in Ta–Ni alloy. Journal of Alloys and Compounds, 2003, 359, 236-243.                                                                                                                                                 | 2.8 | 15        |

Satoshi Semboshi

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Surface hardening of age-hardenable Cu–Ti dilute alloys by plasma nitriding. Surface and Coatings<br>Technology, 2014, 258, 691-698.                                                                                             | 2.2 | 15        |
| 38 | Composition dependence of hydrogen absorbing properties in melt quenched and annealed TiMn2 based alloys. Journal of Alloys and Compounds, 2004, 379, 290-297.                                                                   | 2.8 | 14        |
| 39 | Surface hardening of age-hardenable Cu–Ti alloy by plasma carburization. Surface and Coatings<br>Technology, 2015, 283, 262-267.                                                                                                 | 2.2 | 14        |
| 40 | Superhydrophilicity of Rutile TiO2 Prepared by Anodic Oxidation in High Concentration Sulfuric Acid Electrolyte. Chemistry Letters, 2008, 37, 1126-1127.                                                                         | 0.7 | 13        |
| 41 | Lattice structure transformation and change in surface hardness of Ni 3 Nb and Ni 3 Ta intermetallic compounds induced by energetic ion beam irradiation. Nuclear Instruments & Methods in Physics Research B, 2016, 372, 72-77. | 0.6 | 13        |
| 42 | Hydrogen absorption of Nb–Al alloy bulk specimens. Journal of Alloys and Compounds, 1998, 281,<br>268-274.                                                                                                                       | 2.8 | 12        |
| 43 | Multiple cracking of tantalum by hydrogenation. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2003, 34, 685-690.                                                                     | 1.1 | 12        |
| 44 | Structural and Hydrogen Desorption Properties of Aluminum Hydride. Materials Transactions, 2011, 52, 598-601.                                                                                                                    | 0.4 | 12        |
| 45 | Hardness modification of aluminum-alloys by means of energetic ion irradiation and subsequent thermal aging. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 49-52.                                              | 0.6 | 12        |
| 46 | Effect of structural changes on degradation of hydrogen absorbing capacity in cyclically hydrogenated TiMn2 based alloys. Journal of Alloys and Compounds, 2004, 376, 232-240.                                                   | 2.8 | 11        |
| 47 | Structural and dielectric properties of anodic oxide film on Nb–Ti alloy. Thin Solid Films, 2008, 516, 8613-8619.                                                                                                                | 0.8 | 11        |
| 48 | Fabrication of composite coating comprising bioactive calcium and sodium titanates on titanium using calcium hydroxide slurry containing sodium ions. Surface and Coatings Technology, 2011, 205, 3785-3790.                     | 2.2 | 11        |
| 49 | Energetic ion beam induced crystal phase transformation and resulting hardness change in Ni3Al<br>intermetallic compound. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 287-291.                               | 0.6 | 11        |
| 50 | Structure of thermal-aging induced Fe clusters and their effects on physical properties for Cu-1.2Âat.%<br>Fe alloy. Journal of Alloys and Compounds, 2016, 682, 805-814.                                                        | 2.8 | 11        |
| 51 | Synthesis of Au nanorods via autocatalytic growth of Au seeds formed by sonochemical reduction of Au(I): Relation between formation rate and characteristic of Au nanorods. Ultrasonics Sonochemistry, 2020, 69, 105229.         | 3.8 | 11        |
| 52 | Effects of energetic heavy ion irradiation on hardness of Al–Mg–Si alloys. Nuclear Instruments &<br>Methods in Physics Research B, 2013, 314, 107-111.                                                                           | 0.6 | 10        |
| 53 | Effect of high temperature annealing on non-thermal equilibrium phases induced by energetic ion irradiation in FeRh and Ni3V intermetallic compounds. Japanese Journal of Applied Physics, 2014, 53, 05FC08.                     | 0.8 | 10        |
| 54 | Precipitation Behavior and Properties of Cu-Ti Alloys with Added Nitrogen. Materials Transactions, 2015, 56, 297-302.                                                                                                            | 0.4 | 10        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Fine Precipitation in the Channel Region of Two-Phase Ni3Al and Ni3V Intermetallic Alloys Containing<br>Mo and W. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2016, 47, 998-1008.   | 1.1 | 10        |
| 56 | Suppression of Discontinuous Precipitation in Cu-Ti Alloys by Aging in a Hydrogen Atmosphere.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51,<br>3704-3712.                   | 1.1 | 10        |
| 57 | Photoactivity of an anodized biocompatible TiNbSn alloy prepared in sodium tartrate/hydrogen peroxide aqueous solution. Applied Surface Science, 2021, 543, 148829.                                                               | 3.1 | 10        |
| 58 | Hardening induced by energetic electron beam for Cu–Ti alloys. Japanese Journal of Applied Physics, 2014, 53, 05FC04.                                                                                                             | 0.8 | 9         |
| 59 | Microstructure evolution and hardness change in ordered Ni 3 V intermetallic alloy by energetic ion<br>irradiation. Nuclear Instruments & Methods in Physics Research B, 2014, 338, 72-76.                                        | 0.6 | 9         |
| 60 | Electroforming of oxide-nanoparticle-reinforced copper-matrix composite. Journal of Materials<br>Research, 2015, 30, 521-527.                                                                                                     | 1.2 | 9         |
| 61 | Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation. Nanotechnology, 2020, 31, 455706.                                                                                      | 1.3 | 9         |
| 62 | Effects of Second Phases on the Pulverization of Nb <sub>3</sub> Al-Base Alloys by<br>Hydrogenation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 1132-1138.                                      | 0.2 | 9         |
| 63 | Effect of Prior Cold Working before Aging on the Precipitation Behavior in a Cu-3.5 wt% Ti Alloy.<br>Journal of Korean Institute of Metals and Materials, 2019, 57, 10-17.                                                        | 0.4 | 9         |
| 64 | Fracture behavior of niobium by hydrogenation and its application for fine powder fabrication.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37,<br>1301-1309.                  | 1.1 | 8         |
| 65 | Aging of Cu-3 at% Ti Alloys in Hydrogen Atmosphere: Influence of Hydrogen Pressure on Strength and<br>Electrical Conductivity. Materials Transactions, 2011, 52, 605-609.                                                         | 0.4 | 8         |
| 66 | Formation of Titanium Hydride in Dilute Cu–Ti Alloy by Aging in Hydrogen Atmosphere and<br>Its Effects on Electrical and Mechanical Properties. Materials Transactions, 2013, 54, 520-527.                                        | 0.4 | 8         |
| 67 | Ion Species/Energy Dependence of Irradiation-Induced Lattice Structure Transformation and Surface<br>Hardness of Ni <sub>3</sub> Nb and Ni <sub>3</sub> Ta Intermetallic Compounds. Materials<br>Transactions, 2017, 58, 739-748. | 0.4 | 8         |
| 68 | Solid-state bonding of alloy-designed Cu–Zn brass and steel associated with phase transformation by spark plasma sintering. Journal of Materials Science, 2013, 48, 5801-5809.                                                    | 1.7 | 7         |
| 69 | Microstructural stability and age-hardening behavior of Re-added dual two-phase Ni3Al and Ni3V<br>intermetallic alloys. Philosophical Magazine, 2015, 95, 3859-3875.                                                              | 0.7 | 7         |
| 70 | Thermal conductivity of Ni3V–Ni3Al pseudo-binary alloys. Intermetallics, 2015, 59, 1-7.                                                                                                                                           | 1.8 | 7         |
| 71 | Microstructural Subsequence and Phase Equilibria in an Age-Hardenable Cu-Ni-Si Alloy. Materials<br>Transactions, 2018, 59, 182-187.                                                                                               | 0.4 | 7         |
| 72 | Transmission Electron Microscopy Observations on Cu-Mg Alloy Systems. Solid State Phenomena, 2007, 127, 103-108.                                                                                                                  | 0.3 | 6         |

| #  | Article                                                                                                                                                                                                                     | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cyclic Hydrogenation and Dehydrogenation Property of LiNH <sub>2</sub> Impregnated into Ni Foam. Materials Transactions, 2011, 52, 623-626.                                                                                 | 0.4 | 6         |
| 74 | Experimental studies of complex hydride YMn2H6 on formation kinetics and x-ray absorption fine structure analyses. Applied Physics Letters, 2012, 100, .                                                                    | 1.5 | 6         |
| 75 | Modification of surface hardness for dual two-phase Ni3Al–Ni3V intermetallic compound by using energetic ion beam and subsequent thermal treatment. Nuclear Instruments & Methods in Physics Research B, 2015, 345, 22-26.  | 0.6 | 6         |
| 76 | Thermal conductivity of Ni3(Si,Ti) single-phase alloys. Intermetallics, 2018, 92, 119-125.                                                                                                                                  | 1.8 | 6         |
| 77 | Effect of transition metal addition on microstructure and hardening behavior of two-phase<br>Ni3Al-Ni3V intermetallic alloys. Materialia, 2019, 5, 100173.                                                                  | 1.3 | 6         |
| 78 | Age-Induced Precipitating and Strengthening Behaviors in a Cu–Ni–Al Alloy. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4934-4945.                                   | 1.1 | 6         |
| 79 | Transmission Electron Microscopy Observations on Cu-Ti Alloy Systems. Materials Science Forum, 2005, 502, 163-168.                                                                                                          | 0.3 | 5         |
| 80 | Effect of pressure application on microstructure evolution in a composite of Fe–Al alloy and CrMo<br>steel. Journal of Alloys and Compounds, 2006, 413, 281-288.                                                            | 2.8 | 5         |
| 81 | Effect of Prior Cold-Working on Strength and Electrical Conductivity of Cu-Ti Dilute Alloy Aged in a<br>Hydrogen Atmosphere. Materials Science Forum, 0, 654-656, 1315-1318.                                                | 0.3 | 5         |
| 82 | Hardness modification of Al–Mg–Si alloy by using energetic ion beam irradiation. Nuclear<br>Instruments & Methods in Physics Research B, 2015, 351, 1-5.                                                                    | 0.6 | 5         |
| 83 | Microstructures and hardness properties of laser clad Ni base two-phase intermetallic alloy coating.<br>Journal of Materials Research, 2017, 32, 4531-4540.                                                                 | 1.2 | 5         |
| 84 | Accelerating heterogeneous nucleation to increase hardness and electrical conductivity by deformation prior to ageing for Cu-4 at.% Ti alloy. Philosophical Magazine Letters, 2019, 99, 275-283.                            | 0.5 | 5         |
| 85 | Strong flux pinning by columnar defects with directionally dependent morphologies in GdBCO-coated conductors irradiated with 80 MeV Xe ions. Japanese Journal of Applied Physics, 2020, 59, 023001.                         | 0.8 | 5         |
| 86 | lsothermal Aging Behaviors of Copper–Titanium–Magnesium Supersaturated Solid-Solution Alloys.<br>Materials Transactions, 2020, 61, 1912-1921.                                                                               | 0.4 | 5         |
| 87 | Effect of magnesium doping on discontinuous precipitation in age-hardenable copper–titanium alloys.<br>Materials Characterization, 2022, 189, 111911.                                                                       | 1.9 | 5         |
| 88 | Hydrogen pulverization of refractory metals, alloys and intermetallics. Metals and Materials<br>International, 2004, 10, 45-53.                                                                                             | 1.8 | 4         |
| 89 | Modification of microstructure and hardness for Cu–Ti alloy by means of energetic ion beam irradiation. Nuclear Instruments & Methods in Physics Research B, 2014, 341, 53-57.                                              | 0.6 | 4         |
| 90 | Thermal stability of energetic ion irradiation induced amorphization for Ni <sub>3</sub> Nb<br>and Ni <sub>3</sub> Ta intermetallic compounds. Transactions of the Materials Research<br>Society of Japan, 2017, 42, 41-45. | 0.2 | 4         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                         | IF                                | CITATIONS                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|
| 91  | Age-Induced Precipitation and Hardening Behavior of Ni3Al Intermetallic Alloys Containing Vanadium.<br>Metals, 2019, 9, 160.                                                                                                                                                                                                                                    | 1.0                               | 4                          |
| 92  | Effects of Tungsten Addition and Isothermal Annealing on Microstructural Evolution and Hardening<br>Behavior of Two-Phase Ni <sub>3</sub> Al-Ni <sub>3</sub> V Intermetallic Alloys. Materials<br>Transactions, 2018, 59, 204-213.                                                                                                                              | 0.4                               | 4                          |
| 93  | Three-Dimensional Imaging of Dislocations in a Ti–35mass%Nb Alloy by Electron Tomography.<br>Materials, 2015, 8, 1924-1933.                                                                                                                                                                                                                                     | 1.3                               | 3                          |
| 94  | Effect of elastic collisions and electronic excitation on lattice structure of NiTi bulk intermetallic compound irradiated with energetic ions. Nuclear Instruments & Methods in Physics Research B, 2018, 427, 14-19.                                                                                                                                          | 0.6                               | 3                          |
| 95  | Microstructures and tensile properties of off-stoichiometric Ni3Al–Ni3V pseudo-binary alloys.<br>Journal of Materials Research, 2019, 34, 3061-3070.                                                                                                                                                                                                            | 1.2                               | 3                          |
| 96  | Effects of Iron Addition on the Microstructures and Mechanical Properties of Two-Phase Ni3Al-Ni3V<br>Intermetallic Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2020, 51, 2469-2479.                                                                                                                       | 1.1                               | 3                          |
| 97  | Microstructure, Morphology and Magnetic Property of (001)-Textured MnAlGe Films on<br>Si/SiO <sub>2</sub> Substrate. Materials Transactions, 2021, 62, 680-687.                                                                                                                                                                                                 | 0.4                               | 3                          |
| 98  | Fabrication of the Casting Products in Cu–Zn–Mn–Ni Medium-Entropy Brasses. Materials<br>Transactions, 2021, 62, 856-863.                                                                                                                                                                                                                                        | 0.4                               | 3                          |
| 99  | Anomalous hardening behavior accompanied by reordering of plastically deformed Ni3(Si,Ti)<br>intermetallic alloy. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2014, 610, 228-236.                                                                                                                    | 2.6                               | 2                          |
| 100 | Effect of Dislocations on Spinodal Decomposition, Precipitation, and Age-hardening of Cu–Ti Alloy.<br>High Temperature Materials and Processes, 2015, 34, .                                                                                                                                                                                                     | 0.6                               | 2                          |
| 101 | Processing parameter, microstructure and hardness of Ni base intermetallic alloy coating fabricated by laser cladding. MRS Advances, 2017, 2, 1381-1386.                                                                                                                                                                                                        | 0.5                               | 2                          |
| 102 | Radiation enhanced precipitation of solute atoms in AlCu binary alloys. Transactions of the Materials<br>Research Society of Japan, 2017, 42, 9-14.                                                                                                                                                                                                             | 0.2                               | 2                          |
| 103 | Morphology of Columnar Defects Dependent on Irradiation Direction in High- <i>T</i> <sub>c</sub><br>Superconductors. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-4.                                                                                                                                                                             | 1.1                               | 2                          |
| 104 | Phase diagram of the Cu–Ni3Al pseudo-binary system. Journal of Alloys and Compounds, 2022, 921, 166124.                                                                                                                                                                                                                                                         | 2.8                               | 2                          |
| 105 | Microstructural Observation of Ordered β-Ta2H in Hydrogenated Tantalum. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 956-963.                                                                                                                                                                            | 1.1                               | 1                          |
| 106 | Dielectric properties of anodic oxide film on Nb solid solution/Nb2N two phase alloys. Thin Solid<br>Films, 2010, 519, 719-724.                                                                                                                                                                                                                                 | 0.8                               | 1                          |
| 107 | Synthesis and Structural Investigation of Metal Hydride,<br>Y(Mn <sub>1-<i>x</i></sub> Fe <sub><i>x</i></sub> ) <sub>2(<i>x</i> â‰@.3, 4.0 ≤<i>y</i> ≤.5) and Complex Hydride,<br/>Y(Mn<sub>1-<i>x</i></sub>Fe<sub><i>x</i></sub>)<sub>2<td>ub&gt;H&amp;<br/>0.4<br/>ub&amp;<u>gt;</u>H&amp;</td><td>lt;sub&gt;&lt;<br/>1<br/>lt;sub&gt;6&amp;</td></sub></sub> | ub>H&<br>0.4<br>ub& <u>gt;</u> H& | lt;sub><<br>1<br>lt;sub>6& |
| 108 | Rey Engineering Materials, or 506, 5:co-5:40<br>Formation of Titanium Hydride in Dilute Cu-Ti Alloy by Aging in Hydrogen Atmosphere and Its Effects<br>on Electrical and Mechanical Properties. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of                                                                                                      | 0.2                               | 1                          |

Metals, 2012, 76, 496-503.

7

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Microstructure and Properties of Laser Clad Ni-Base Intermetallic Alloys Reinforced with Carbide<br>Particles. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 451-460.                                             | 0.2 | 1         |
| 110 | Superplastic Deformation Mechanisms of Monolithic Intermetallics. Materials Science Forum, 1999, 304-306, 147-154.                                                                                                                               | 0.3 | 0         |
| 111 | Hydrogen Pulverization in Intermetallic-based Alloys. Materials Research Society Symposia<br>Proceedings, 2000, 646, 312.                                                                                                                        | 0.1 | 0         |
| 112 | Fracture Behaviors of Niobium Alloys by Hydrogenation and its Application for Fine Powder<br>Fabrication. Materials Science Forum, 2007, 539-543, 2719-2724.                                                                                     | 0.3 | 0         |
| 113 | Anomalous hardening and microstructural evolution accompanied by reordering and restoring of plastically deformed Co3Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 411-419. | 2.6 | 0         |
| 114 | Unidirectional Crystal Orientation of Dual-Phase Ni3Al-Based Alloy via Laser Irradiation. Metals, 2020, 10, 1011.                                                                                                                                | 1.0 | 0         |
| 115 | Production of Tantalum Powder by Hydrogenation Process. Hosokawa Powder Technology<br>Foundation ANNUAL REPORT. 2004. 12. 124-130.                                                                                                               | 0.0 | 0         |