
Sergey A Sinenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/247630/publications.pdf Version: 2024-02-01

SEDCEV & SINENKO

#	Article	IF	CITATIONS
1	Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cellular and Molecular Life Sciences, 2021, 78, 1207-1220.	5.4	12
2	Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Frontiers in Cell and Developmental Biology, 2021, 9, 714370.	3.7	89
3	Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Experimental Cell Research, 2020, 389, 111882.	2.6	10
4	Human AlphoidtetO Artificial Chromosome as a Gene Therapy Vector for the Developing Hemophilia A Model in Mice. Cells, 2020, 9, 879.	4.1	16
5	hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells, 2019, 37, 1018-1029.	3.2	11
6	Genetic tool for fate mapping of Oct4 (Pou5f1)-expressing cells and their progeny past the pluripotency stage. Stem Cell Research and Therapy, 2019, 10, 391.	5.5	4
7	Transfer of Synthetic Human Chromosome into Human Induced Pluripotent Stem Cells for Biomedical Applications. Cells, 2018, 7, 261.	4.1	17
8	Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. Oncotarget, 2018, 9, 35241-35250.	1.8	8
9	Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget, 2017, 8, 70452-70462.	1.8	0
10	Genetic dissection of leukemia-associated IDH1 and IDH2 mutants and D-2-hydroxyglutarate in Drosophila. Blood, 2015, 125, 336-345.	1.4	25
11	The deubiquitinating enzyme DUBAI stabilizes DIAP1 to suppress Drosophila apoptosis. Cell Death and Differentiation, 2014, 21, 604-611.	11.2	10
12	Oxidative stress in the haematopoietic niche regulates the cellular immune response in <i>Drosophila</i> . EMBO Reports, 2012, 13, 83-89.	4.5	99
13	Interaction between Differentiating Cell- and Niche-Derived Signals in Hematopoietic Progenitor Maintenance. Cell, 2011, 147, 1589-1600.	28.9	178
14	Genetic manipulation of AML1-ETO–induced expansion of hematopoietic precursors in a Drosophila model. Blood, 2010, 116, 4612-4620.	1.4	56
15	Dual Role of Wingless Signaling in Stem-like Hematopoietic Precursor Maintenance in Drosophila. Developmental Cell, 2009, 16, 756-763.	7.0	125
16	Genetic Dissection of Hematopoiesis Using Drosophila as a Model System. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 259-299.	0.4	9
17	Expression pattern of Filamin-240 in Drosophila blood cells. Gene Expression Patterns, 2006, 6, 928-934.	0.8	16
18	Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene, 2004, 23, 9120-9128.	5.9	145

#	Article	IF	CITATIONS
19	Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. Developmental Biology, 2004, 273, 48-62.	2.0	35