Riddhi M Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475643/publications.pdf

Version: 2024-02-01

		1684188	2053705	
11	125	5	5	
papers	citations	h-index	g-index	
12	12	12	213	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. Cell Stem Cell, 2020, 27, 732-747.e7.	11.1	53
2	Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to Flt3-ITD mutations. ELife, $2016, 5, \ldots$	6.0	24
3	The efficiency of murine MLL-ENL–driven leukemia initiation changes with age and peaks during neonatal development. Blood Advances, 2019, 3, 2388-2399.	5.2	19
4	Outcomes of endoscopic treatment of leaks and fistulae after sleeve gastrectomy: results from a large multicenter U.S. cohort. Surgery for Obesity and Related Diseases, 2019, 15, 850-855.	1.2	15
5	Kmt2c mutations enhance HSC self-renewal capacity and convey a selective advantage after chemotherapy. Cell Reports, 2021, 34, 108751.	6.4	13
6	SKIDA1 Sustains MLL-ENL-Expressing Hematopoietic Stem and Progenitor Cells. Blood, 2021, 138, 3294-3294.	1.4	1
7	HSCs Transition from Fetal to Adult Transcriptional States through Gradual Epigenomic Reprogramming That Begins Shortly after Birth. Blood, 2018, 132, 172-172.	1.4	O
8	Kmt2c Limits the Self-Renewal Capacity of Multiply Divided HSCs By Promoting Sensitivity to Interleukin-1. Blood, 2019, 134, 3711-3711.	1.4	0
9	FLT3ITD Target Enhancers Are Primed but Inaccessible in Fetal Hematopoietic Progenitors. Blood, 2019, 134, 1228-1228.	1.4	O
10	Haploid Kmt2c Deletions Enhance Hematopoietic Stem Cell Mobilization in Response to Granulocyte-Colony Stimulating Factor. Blood, 2021, 138, 2762-2762.	1.4	0
11	<i>FLT3 ITD and NUP98</i> translocations Cooperate to Induce Type I Interferon Signaling That Impedes Hematopoietic Progenitor Differentiation. Blood, 2021, 138, 1150-1150.	1.4	O