
Vincenzo Palermo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
2	Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy. Advanced Materials, 2006, 18, 145-164.	11.1	384
3	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
4	High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. Journal of the American Chemical Society, 2009, 131, 15576-15577.	6.6	280
5	Electrical percolation in graphene–polymer composites. 2D Materials, 2018, 5, 032003.	2.0	266
6	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	5.2	215
7	Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. Journal of Physical Chemistry C, 2013, 117, 10683-10690.	1.5	195
8	Graphene: The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonicationâ€Assisted Techniques: A Nanoscale Study (Adv. Funct. Mater. 37/2013). Advanced Functional Materials, 2013, 23, 4756-4756.	7.8	184
9	Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy. Carbon, 2019, 143, 268-275.	5.4	183
10	Molecular Self-Assembly across Multiple Length Scales. Angewandte Chemie - International Edition, 2007, 46, 4428-4432.	7.2	181
11	Tuning the Workâ€Function Via Strong Coupling. Advanced Materials, 2013, 25, 2481-2485.	11.1	177
12	Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Materials, 2006, 5, 276-280.	13.3	172
13	Nanoscale Quantitative Measurement of the Potential of Charged Nanostructures by Electrostatic and Kelvin Probe Force Microscopy: Unraveling Electronic Processes in Complex Materials. Accounts of Chemical Research, 2010, 43, 541-550.	7.6	167
14	Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5, 11234.	2.8	166
15	A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon, 2013, 53, 357-365.	5.4	151
16	Local Current Mapping and Patterning of Reduced Graphene Oxide. Journal of the American Chemical Society, 2010, 132, 14130-14136.	6.6	140
17	Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective. Advanced Materials, 2016, 28, 6232-6238.	11.1	137
18	Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano, 2016, 10, 7125-7134.	7.3	132

#	Article	IF	CITATIONS
19	Charge transport in graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization. Journal of Materials Chemistry, 2011, 21, 2924.	6.7	127
20	Photovoltaic Charge Generation Visualized at the Nanoscale:Â A Proof of Principle. Journal of the American Chemical Society, 2008, 130, 780-781.	6.6	120
21	Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale, 2013, 5, 4205.	2.8	116
22	Nucleationâ€Governed Reversible Selfâ€Assembly of an Organic Semiconductor at Surfaces: Longâ€Range Mass Transport Forming Giant Functional Fibers. Advanced Functional Materials, 2007, 17, 3791-3798.	7.8	108
23	Fragmentation and exfoliation of 2-dimensional materials: a statistical approach. Nanoscale, 2014, 6, 5926-5933.	2.8	100
24	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nature Communications, 2016, 7, 11090.	5.8	97
25	Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water. Chemical Engineering Journal, 2017, 326, 130-140.	6.6	97
26	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	11.1	93
27	Harnessing the Liquidâ€Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie - International Edition, 2014, 53, 10355-10361.	7.2	92
28	Electric-Field-Assisted Alignment of Supramolecular Fibers. Advanced Materials, 2006, 18, 1276-1280.	11.1	90
29	The Relationship between Nanoscale Architecture and Function in Photovoltaic Multichromophoric Arrays as Visualized by Kelvin Probe Force Microscopy. Journal of the American Chemical Society, 2008, 130, 14605-14614.	6.6	85
30	Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Materials, 2017, 4, 025017.	2.0	85
31	Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. Journal of Materials Chemistry, 2010, 20, 9052.	6.7	82
32	Nonâ€conventional Processing and Postâ€processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics. Advanced Functional Materials, 2011, 21, 1279-1295.	7.8	81
33	Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon, 2014, 78, 566-577.	5.4	81
34	Growing perovskite into polymers for easy-processable optoelectronic devices. Scientific Reports, 2015, 5, 7725.	1.6	78
35	A Kelvin Probe Force Microscopy Study of the Photogeneration of Surface Charges in All-Thiophene Photovoltaic Blends. Advanced Functional Materials, 2007, 17, 472-478.	7.8	70
36	Electronic Transport Properties of Ensembles of Peryleneâ€Substituted Polyâ€isocyanopeptide Arrays. Advanced Functional Materials, 2008, 18, 3947-3955.	7.8	70

#	Article	IF	CITATIONS
37	Graphene-based coatings on polymer films for gas barrier applications. Carbon, 2016, 96, 503-512.	5.4	69
38	Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Materials, 2019, 6, 025006.	2.0	68
39	"Helter‧kelterâ€Like―Perylene Polyisocyanopeptides. Chemistry - A European Journal, 2009, 15, 2536-254	471.7	64
40	Solvent vapour annealing of organic thin films: controlling the self-assembly of functional systems across multiple length scales. Journal of Materials Chemistry, 2010, 20, 2493.	6.7	63
41	Tipâ^'Sample Interactions in Kelvin Probe Force Microscopy: Quantitative Measurement of the Local Surface Potential. Journal of Physical Chemistry C, 2008, 112, 17368-17377.	1.5	62
42	Graphene–organic composites for electronics: optical and electronic interactions in vacuum, liquids and thin solid films. Journal of Materials Chemistry C, 2014, 2, 3129.	2.7	62
43	Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 14302.	1.3	61
44	Real-time imaging of Na ⁺ reversible intercalation in "Janus―graphene stacks for battery applications. Science Advances, 2021, 7, .	4.7	61
45	Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries. Composites Science and Technology, 2021, 208, 108768.	3.8	61
46	Synergic Exfoliation of Graphene with Organic Molecules and Inorganic Ions for the Electrochemical Production of Flexible Electrodes. ChemPlusChem, 2014, 79, 439-446.	1.3	60
47	Abrupt orientational changes for liquid crystals adsorbed on a graphite surface. Physical Review E, 1998, 57, R2519-R2522.	0.8	59
48	Self-Organization and Nanoscale Electronic Properties of Azatriphenylene-Based Architectures: A Scanning Probe Microscopy Study. Advanced Materials, 2006, 18, 3313-3317.	11.1	56
49	Quantitative Measurement of the Local Surface Potential of ï€-Conjugated Nanostructures: A Kelvin Probe Force Microscopy Study. Advanced Functional Materials, 2006, 16, 1407-1416.	7.8	55
50	Graphene Transistors via in Situ Voltage-Induced Reduction of Graphene-Oxide under Ambient Conditions. Journal of the American Chemical Society, 2011, 133, 14320-14326.	6.6	55
51	Self-assembly of discotic molecules into mesoscopic crystals by solvent-vapour annealing. Soft Matter, 2008, 4, 2064.	1.2	54
52	Self-Assembly of an Alkylated Guanosine Derivative into Ordered Supramolecular Nanoribbons in Solution and on Solid Surfaces. Chemistry - A European Journal, 2007, 13, 3757-3764.	1.7	53
53	Probing Local Surface Potential of Quasiâ€Oneâ€Dimensional Systems: A KPFM Study of P3HT Nanofibers. Advanced Functional Materials, 2008, 18, 907-914.	7.8	53
54	Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status. Journal of Nanobiotechnology, 2017, 15, 46.	4.2	53

#	Article	IF	CITATIONS
55	The Relationship between Nanoscale Architecture and Charge Transport in Conjugated Nanocrystals Bridged by Multichromophoric Polymers. Journal of the American Chemical Society, 2009, 131, 7055-7063.	6.6	52
56	Use of Optical Contrast To Estimate the Degree of Reduction of Graphene Oxide. Journal of Physical Chemistry C, 2013, 117, 620-625.	1.5	52
57	Temperatureâ€Enhanced Solvent Vapor Annealing of a <i>C</i> ₃ Symmetric Hexaâ€ <i>peri</i> â€Hexabenzocoronene: Controlling the Selfâ€Assembly from Nano―to Macroscale. Small, 2009, 5, 112-119.	5.2	51
58	Multicolor, large-area fluorescence sensing through oligothiophene-self-assembled monolayers. Chemical Communications, 2011, 47, 1689-1691.	2.2	51
59	The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonicationâ€Assisted Techniques: A Nanoscale Study. Advanced Functional Materials, 2013, 23, 4684-4693.	7.8	50
60	Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies. Materials Today, 2014, 17, 504-517.	8.3	49
61	Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Materials, 2014, 1, 011012.	2.0	49
62	Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480.	5.4	49
63	Large Area Extreme-UV Lithography of Graphene Oxide via Spatially Resolved Photoreduction. Langmuir, 2012, 28, 5489-5495.	1.6	46
64	Graphene oxide for gas detection under standard humidity conditions. 2D Materials, 2015, 2, 035018.	2.0	46
65	Chemical Approaches to 2D Materials. Advanced Materials, 2016, 28, 6027-6029.	11.1	46
66	Pyrazolino[60]fullerene-Oligophenylenevinylene Dumbbell-Shaped Arrays: Synthesis, Electrochemistry, Photophysics, and Self-Assembly on Surfaces. Chemistry - A European Journal, 2005, 11, 4405-4415.	1.7	45
67	Not a molecule, not a polymer, not a substrate… the many faces of graphene as a chemical platform. Chemical Communications, 2013, 49, 2848.	2.2	45
68	Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sensors and Actuators B: Chemical, 2021, 344, 130253.	4.0	45
69	Functional polymers: scanning force microscopy insights. Physical Chemistry Chemical Physics, 2006, 8, 3927-3938.	1.3	43
70	Exploring nanoscale electrical and electronic properties of organic and polymeric functional materials by atomic force microscopy based approaches. Chemical Communications, 2007, , 3326.	2.2	42
71	Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers. Carbon, 2015, 89, 188-196.	5.4	42
72	Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples. Sensors and Actuators B: Chemical, 2019, 281, 739-745.	4.0	42

#	Article	IF	CITATIONS
73	Self-organized nanofibers from a giant nanographene: effect of solvent and deposition method. Journal of Materials Chemistry, 2006, 16, 266-271.	6.7	41
74	Macromolecular Scaffolding: The Relationship Between Nanoscale Architecture and Function in Multichromophoric Arrays for Organic Electronics. Advanced Materials, 2010, 22, E81-8.	11.1	39
75	Electrochemically exfoliated graphene oxide/iron oxide composite foams for lithium storage, produced by simultaneous graphene reduction and Fe(OH)3 condensation. Carbon, 2015, 84, 254-262.	5.4	38
76	Systematic study of the correlation between surface chemistry, conductivity and electrocatalytic properties of graphene oxide nanosheets. Carbon, 2017, 120, 165-175.	5.4	38
77	Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale, 2016, 8, 8749-8760.	2.8	37
78	Influence of Molecular Order on the Local Work Function of Nanographene Architectures: A Kelvin-Probe Force Microscopy Study. ChemPhysChem, 2005, 6, 2371-2375.	1.0	36
79	Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Composites Science and Technology, 2020, 185, 107848.	3.8	36
80	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie - International Edition, 2020, 59, 1087-1092.	7.2	34
81	Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water. Chemosphere, 2020, 259, 127501.	4.2	34
82	Micron-sized [6,6]-phenyl C61 butyric acid methyl ester crystals grown by dip coating in solvent vapour atmosphere: interfaces for organic photovoltaics. Physical Chemistry Chemical Physics, 2010, 12, 4473.	1.3	31
83	Confocal ultrafast pump–probe spectroscopy: a new technique to explore nanoscale composites. Nanoscale, 2012, 4, 2219.	2.8	31
84	Anisotropic molecular packing of soluble C60 fullerenes in hexagonal nanocrystals obtained by solvent vapor annealing. Carbon, 2012, 50, 1332-1337.	5.4	31
85	Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale, 2014, 6, 8969-8977.	2.8	31
86	Graphene–organic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach. Journal of Materials Chemistry, 2012, 22, 18237.	6.7	30
87	Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation. Chemical Communications, 2014, 50, 13117-13120.	2.2	30
88	Graphene Oxide Promotes Site-Selective Allylic Alkylation of Thiophenes with Alcohols. Organic Letters, 2018, 20, 3705-3709.	2.4	30
89	Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discussions, 2021, 227, 189-203.	1.6	30
90	Enhanced mobility in P3HT-based OTFTs upon blending with a phenylene–thiophene–thiophene–phenylene small molecule. Chemical Communications, 2012, 48, 1562-1564.	2.2	29

#	Article	IF	CITATIONS
91	Selective Gas Permeation in Graphene Oxide–Polymer Self-Assembled Multilayers. ACS Applied Materials & Interfaces, 2018, 10, 11242-11250.	4.0	29
92	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	1.8	29
93	Phase separation and affinity between a fluorinated perylene diimide dye and an alkyl-substituted hexa-peri-hexabenzocoronene. Journal of Materials Chemistry, 2010, 20, 71-82.	6.7	28
94	Bottomâ€Up Fabricated Asymmetric Electrodes for Organic Electronics. Advanced Materials, 2010, 22, 5018-5023.	11.1	27
95	Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chemistry of Materials, 2010, 22, 2597-2607.	3.2	27
96	Leveraging the Ambipolar Transport in Polymeric Fieldâ€Effect Transistors via Blending with Liquidâ€Phase Exfoliated Graphene. Advanced Materials, 2014, 26, 4814-4819.	11.1	27
97	Graphene-based nanocomposites for structural and functional applications: using 2-dimensional materials in a 3-dimensional world. 2D Materials, 2015, 2, 030205.	2.0	27
98	Soft confinement of water in graphene-oxide membranes. Carbon, 2016, 108, 199-203.	5.4	27
99	Scanning Probe Microscopy Investigation of Self-Organized Perylenetetracarboxdiimide Nanostructures at Surfaces: Structural and Electronic Properties. Small, 2007, 3, 161-167.	5.2	25
100	Polydopamine Nanoparticle-Coated Polysulfone Porous Granules as Adsorbents for Water Remediation. ACS Omega, 2019, 4, 4839-4847.	1.6	25
101	Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale, 2016, 8, 6739-6753.	2.8	24
102	Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide. Journal of Physical Chemistry C, 2019, 123, 15122-15130.	1.5	23
103	Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li‧ Batteries. Small, 2021, 17, e2007242.	5.2	23
104	Defective graphene nanosheets for drinking water purification: Adsorption mechanism, performance, and recovery. FlatChem, 2021, 29, 100283.	2.8	23
105	Formation of terraced, nearly flat, hydrogen-terminated, (100) Si surfaces after high-temperature treatment inH2of single-crystalline silicon. Physical Review B, 2005, 72, .	1.1	22
106	Improved Biocompatibility of Aminoâ€Functionalized Graphene Oxide in <i>Caenorhabditis elegans</i> . Small, 2019, 15, e1902699.	5.2	22
107	Electrochemical exfoliation of graphite in H ₂ SO ₄ , Li ₂ SO ₄ and NaClO ₄ solutions monitored <i>in situ</i> by Raman microscopy and spectroscopy. Faraday Discussions, 2021, 227, 291-305.	1.6	22
108	Production of nanostructures of silicon on silicon by atomic self-organization observed by scanning tunneling microscopy. Applied Physics Letters, 2002, 80, 673-675.	1.5	21

#	Article	IF	CITATIONS
109	Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment. Nanoscale, 2019, 11, 22780-22787.	2.8	21
110	Morphological changes of the Si [100] surface after treatment with concentrated and diluted HF. Materials Science in Semiconductor Processing, 2001, 4, 437-441.	1.9	20
111	Local Surface Potential of ï€â€Conjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth. Small, 2011, 7, 634-639.	5.2	20
112	Dynamically Switching the Electronic and Electrostatic Properties of Indium–Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 1102-1110.	2.4	20
113	UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells. IEEE Nanotechnology Magazine, 2016, 15, 725-730.	1.1	19
114	Dose and wavelength dependent study of graphene oxide photoreduction with VUV Synchrotron radiation. Carbon, 2014, 79, 478-485.	5.4	18
115	Robust Two-Dimensional Electronic Properties in Three-Dimensional Microstructures of Rotationally Stacked Turbostratic Graphene. Physical Review Applied, 2017, 7, .	1.5	18
116	Exfoliation of Few‣ayer Graphene in Volatile Solvents Using Aromatic Perylene Diimide Derivatives as Surfactants. ChemPlusChem, 2017, 82, 358-367.	1.3	18
117	Scalable synthesis and purification of functionalized graphene nanosheets for water remediation. Chemical Communications, 2021, 57, 3765-3768.	2.2	18
118	Graphene glial-interfaces: challenges and perspectives. Nanoscale, 2021, 13, 4390-4407.	2.8	18
119	Photoconductive and supramolecularly engineered organic field-effect transistors based on fibres from donor–acceptor dyads. Nanoscale, 2012, 4, 1677.	2.8	17
120	Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye. Organic Electronics, 2013, 14, 1787-1792.	1.4	17
121	Multiscale Charge Transport in van der Waals Thin Films: Reduced Graphene Oxide as a Case Study. ACS Nano, 2021, 15, 2654-2667.	7.3	17
122	Formation of nanoclusters on silicon from carbon deposition. Applied Surface Science, 2004, 226, 191-196.	3.1	16
123	Graphene-Induced Enhancement of n-Type Mobility in Perylenediimide Thin Films. Journal of Physical Chemistry C, 2014, 118, 24819-24826.	1.5	16
124	A robust, modular approach to produce graphene–MO _x multilayer foams as electrodes for Li-ion batteries. Nanoscale, 2019, 11, 5265-5273.	2.8	16
125	Core–shell graphene oxide–polymer hollow fibers as water filters with enhanced performance and selectivity. Faraday Discussions, 2021, 227, 274-290.	1.6	16
126	Visible‣ight Assisted Covalent Surface Functionalization of Reduced Graphene Oxide Nanosheets with Arylazo Sulfones. Chemistry - A European Journal, 2022, 28, e202200333.	1.7	16

#	Article	IF	CITATIONS
127	Allylic and Allenylic Dearomatization of Indoles Promoted by Graphene Oxide by Covalent Grafting Activation Mode. Chemistry - A European Journal, 2020, 26, 10427-10432.	1.7	15
128	Grapheneâ€Paperâ€Based Electrodes on Plastic and Textile Supports as New Platforms for Amperometric Biosensing. Advanced Functional Materials, 2022, 32, 2107941.	7.8	15
129	Polymeric micelles using pseudo-amphiphilic block copolymers and their cellular uptake. Journal of Materials Chemistry, 2011, 21, 2555.	6.7	14
130	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology, 2017, 28, 174001.	1.3	14
131	Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS Applied Materials & Interfaces, 2018, 10, 43192-43202.	4.0	14
132	Electrochemical sensing of glucose by chitosan modified graphene oxide. JPhys Materials, 2020, 3, 014011.	1.8	14
133	Graphene oxide-polysulfone hollow fibers membranes with synergic ultrafiltration and adsorption for enhanced drinking water treatment. Journal of Membrane Science, 2022, 658, 120707.	4.1	14
134	Self-assembly of π-conjugated discs on heterogeneous surfaces: effect of the micro- and nano-scale dewetting. Synthetic Metals, 2004, 147, 117-121.	2.1	12
135	Large-area bi-component processing of organic semiconductors by spray deposition and spin coating with orthogonal solvents. Applied Physics A: Materials Science and Processing, 2009, 95, 15-20.	1.1	12
136	Large area fabrication of self-standing nanoporous graphene-on-PMMA substrate. Materials Letters, 2016, 184, 47-51.	1.3	12
137	Managing heat phenomena in epoxy composites production via graphenic derivatives: synthesis, properties and industrial production simulation of graphene and graphene oxide containing composites. 2D Materials, 2017, 4, 015020.	2.0	12
138	Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors. Nanoscale, 2021, 13, 3285-3294.	2.8	12
139	Exfoliation of graphene with an industrial dye: teaching an old dog new tricks. 2D Materials, 2014, 1, 035006.	2.0	11
140	Nonlinear subharmonic oscillation of orthotropic graphene-matrix composite. Computational Materials Science, 2015, 99, 164-172.	1.4	11
141	Thermal treatment and chemical doping of semi-transparent graphene films. Organic Electronics, 2015, 18, 53-60.	1.4	11
142	Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in Loop Heat Pipes for aeronautics. Experimental Thermal and Fluid Science, 2016, 78, 147-152.	1.5	11
143	Nanoscale Structural and Electronic Properties of Ultrathin Blends of Two Polyaromatic Molecules: A Kelvin Probe Force Microscopy Investigation. ChemPhysChem, 2006, 7, 847-853.	1.0	10
144	Influence of π–π stacking on the self-assembly and coiling of multi-chromophoric polymers based on perylenebis(dicarboximides): an AFM study. Soft Matter, 2009, 5, 4680.	1.2	10

#	Article	IF	CITATIONS
145	Selfâ€Complementary Nucleosideâ€Thiophene Hybrid Systems: Synthesis and Supramolecular Organization. Macromolecular Rapid Communications, 2010, 31, 351-355.	2.0	10
146	Electrostatic transparency of graphene oxide sheets. Carbon, 2015, 86, 188-196.	5.4	10
147	Self-organised growth of silicon structures on silicon during oxide desorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 220-224.	1.7	9
148	Silicon carbide nanocrystals growth on Si(100) and Si(111) from a chemisorbed methanol layer. Surface Science, 2006, 600, 1140-1146.	0.8	8
149	High yield production of graphene-Fe 2 O 3 nano-composites via electrochemical intercalation of nitromethane and iron chloride, and their application in lithium storage. FlatChem, 2017, 3, 8-15.	2.8	8
150	Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact, 2021, 23, 100330.	2.4	8
151	The Use of Inâ€line Quantitative Analysis to Follow Polymer Processing. Macromolecular Symposia, 2009, 279, 191-200.	0.4	7
152	Orthogonal self-assembly and selective solvent vapour annealing: simplified processing of a photovoltaic blend. Chemical Communications, 2013, 49, 4322.	2.2	7
153	Titanium Dioxide Mesoporous Electrodes for Solidâ€State Dyeâ€Sensitized Solar Cells: Crossâ€Analysis of the Critical Parameters. Advanced Energy Materials, 2014, 4, 1301362.	10.2	7
154	Dopamine-functionalized graphene oxide as a high-performance material for biosensing. 2D Materials, 2020, 7, 024007.	2.0	7
155	Introduction to â€~Chemistry of 2D materials: graphene and beyond'. Nanoscale, 2020, 12, 24309-24310.	2.8	7
156	Real time investigation of the growth of silicon carbide nanocrystals on Si(100) using synchrotron X-ray diffraction. Applied Surface Science, 2008, 254, 2162-2167.	3.1	6
157	Improving charge transport in poly(3â€hexylthiophene) transistors via blending with an alkylâ€substituted phenylene–thiophene–thiophene–phenylene molecule. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 642-649.	2.4	6
158	Lateral diffusion of titanium disilicide as a route to contacting hybrid Si/organic nanostructures. Applied Physics Letters, 2002, 81, 3636-3638.	1.5	5
159	Enhancing triboelectric performances of electrospun poly(vinylidene fluoride) with graphene oxide sheets. Graphene Technology, 2020, 5, 49-57.	1.9	5
160	Surface Modifications in Si after Rapid Thermal Annealing. Journal of the Electrochemical Society, 2002, 149, G633.	1.3	4
161	An Evaluation of Graphene as a Multi-Functional Heating Element for Biomedical Applications. Journal of Biomedical Nanotechnology, 2018, 14, 86-97.	0.5	4
162	Long-range selective transport of anions and cations in graphene oxide membranes, causing selective crystallization on the macroscale. Nanoscale Advances, 2021, 3, 353-358.	2.2	4

#	Article	IF	CITATIONS
163	Morphological and Electrical Characterization of Etched Si Wafers. Journal of the Electrochemical Society, 2004, 151, G554.	1.3	3
164	Comment on"Luminescent Nanoring Structures on Silicon― Advanced Materials, 2004, 16, 1493-1494.	11.1	3
165	An example of chemistry–morphology interaction: making up for the geometric and energetic heterogeneities of the (1 0 0) surface of single crystalline silicon by high-temperature treatments in H2. Applied Surface Science, 2005, 252, 602-611.	3.1	3
166	Unconventional nanotubes self-assembled in alumina channels: morphology and surface potential of isolated nanostructures at surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1577-1588.	1.6	3
167	Combined microscopies study of the C-contamination induced by extreme-ultraviolet radiation: A surface-dependent secondary-electron-based model. Applied Physics Letters, 2012, 100, 201603.	1.5	3
168	3D to 2D reorganization of silver–thiol nanostructures, triggered by solvent vapor annealing. Nanoscale, 2018, 10, 23018-23026.	2.8	3
169	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie, 2020, 132, 1103-1108.	1.6	3
170	The role of charge transfer at reduced graphene oxide/organic semiconductor interface on the charge transport properties. Organic Electronics, 2020, 77, 105499.	1.4	3
171	Measurement of the conformational switching of azobenzenes from the macro- to attomolar scale in self-assembled 2D and 3D nanostructures. Physical Chemistry Chemical Physics, 2021, 23, 11698-11708.	1.3	3
172	Allâ€Electrochemical Nanofabrication of Stacked Ternary Metal Sulfide/Graphene Electrodes for Highâ€Performance Alkaline Batteries. Small, 2022, 18, e2106403.	5.2	3
173	Advances in silicon surface characterisation using light beam injection techniques. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 235-239.	1.7	2
174	NUMERICAL SOLUTIONS OF THE STOCHASTIC EQUATIONS OF CRYSTAL GROWTH. International Journal of Modern Physics C, 2000, 11, 195-203.	0.8	1
175	Slope-controlled surface instabilities. Philosophical Magazine Letters, 2004, 84, 157-164.	0.5	1
176	Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy. , 2006, , 390-429.		1
177	Organic Electronics: Non-conventional Processing and Post-processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics (Adv. Funct. Mater. 7/2011). Advanced Functional Materials, 2011, 21, 1206-1206.	7.8	1
178	Polymeric Micelles Using Pseudoâ€Amphiphilic Block Copolymers. Macromolecular Symposia, 2012, 313-314, 51-58.	0.4	1
179	Graphene-Pyrene Nanocomposites Obtained Using Azide Chemistry. Journal of Nanoscience and Nanotechnology, 2018, 18, 1290-1295.	0.9	1
100	Lastin sun and silance Nature 2000, 457, 1174, 1174	10 5	

180 Lost in sun and silence. Nature, 2009, 457, 1174-1174.

13.7 0

#	Article	IF	CITATIONS
181	Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells. , 2015, , .		0
182	Structure and sieving mechanism of high selective graphene-based membranes. AIP Conference Proceedings, 2018, , .	0.3	0