
Izabela Jośko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475386/publications.pdf Version: 2024-02-01

IZABELA IOÅVO

#	Article	IF	CITATIONS
1	Cross-examination of engineered nanomaterials in crop production: Application and related implications. Journal of Hazardous Materials, 2022, 424, 127374.	6.5	13
2	The co-occurrence of Zn-and Cu-based engineered nanoparticles in soils: The metal extractability vs. toxicity to Folsomia candida. Chemosphere, 2022, 287, 132252.	4.2	9
3	The antioxidant defense responses of Hordeum vulgare L. to polycyclic aromatic hydrocarbons and their derivatives in biochar-amended soil. Environmental Pollution, 2022, 294, 118664.	3.7	8
4	Ecotoxicity of sewage sludge- or sewage sludge/willow-derived biochar-amended soil. Environmental Pollution, 2022, 305, 119235.	3.7	10
5	Revealing the toxicity of lopinavir- and ritonavir-containing water and wastewater treated by photo-induced processes to Danio rerio and Allivibrio fischeri. Science of the Total Environment, 2022, 824, 153967.	3.9	12
6	The chronic effects of CuO and ZnO nanoparticles on Eisenia fetida in relation to the bioavailability in aged soils. Chemosphere, 2021, 266, 128982.	4.2	12
7	The possibilities of using elicitors in the increase of functional value of winter wheat grain under field conditions. Cereal Chemistry, 2021, 98, 1038-1048.	1.1	0
8	Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. Journal of Hazardous Materials, 2021, 416, 126230.	6.5	22
9	Transcriptional and biochemical response of barley to co-exposure of metal-based nanoparticles. Science of the Total Environment, 2021, 782, 146883.	3.9	13
10	Effect of Source–Sink Ratio Manipulation on Growth, Flowering, and Yield Potential of Soybean. Agriculture (Switzerland), 2021, 11, 926.	1.4	3
11	The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils. Science of the Total Environment, 2020, 721, 137771.	3.9	30
12	Nanoparticle–Plant Interactions: Twoâ€Way Traffic. Small, 2019, 15, e1901794.	5.2	132
13	Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 2019, 352, 204-212.	2.3	66
14	Copper and zinc fractionation in soils treated with CuO and ZnO nanoparticles: The effect of soil type and moisture content. Science of the Total Environment, 2019, 653, 822-832.	3.9	22
15	Toxicity of combined mixtures of nanoparticles to plants. Journal of Hazardous Materials, 2017, 331, 200-209.	6.5	77
16	The bioavailability and toxicity of ZnO and Ni nanoparticles and their bulk counterparts in different sediments. Journal of Soils and Sediments, 2016, 16, 1798-1808.	1.5	18
17	Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology, 2015, 24, 1923-1932.	1.1	43
18	An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environmental Science and Pollution Research, 2015, 22, 7833-7842.	2.7	23

Izabela Joå›ko

#	Article	IF	CITATIONS
19	Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 2014, 104, 247-253.	2.9	51
20	Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma, 2014, 213, 502-511.	2.3	61
21	Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 2014, 214-215, 10-18.	2.3	132
22	The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma, 2014, 232-234, 528-537.	2.3	84
23	Phytotoxicity of nanoparticles—problems with bioassay choosing and sample preparation. Environmental Science and Pollution Research, 2014, 21, 10215-10224.	2.7	24
24	Manufactured Nanomaterials: The Connection Between Environmental Fate and Toxicity. Critical Reviews in Environmental Science and Technology, 2013, 43, 2581-2616.	6.6	18
25	Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecological Engineering, 2013, 60, 50-59.	1.6	73
26	The influence of ZnO and TiO ₂ nanoparticles on the toxicity of sewage sludges. Environmental Sciences: Processes and Impacts, 2013, 15, 296-306.	1.7	27
27	Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 2013, 260, 375-382.	6.5	217
28	Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere, 2013, 92, 91-99.	4.2	103
29	The Phytotoxicity Changes of Sewage Sludge-Amended Soils. Water, Air, and Soil Pollution, 2012, 223, 4937-4948.	1.1	45
30	The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. Journal of Hazardous Materials, 2011, 186, 436-442.	6.5	57