Amelia Virginia GonzÃ;lez-Porto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2474379/publications.pdf Version: 2024-02-01

Amelia Virginia

#	Article	IF	CITATIONS
1	Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role?. Insects, 2022, 13, 371.	2.2	2
2	Glucosinolates as Markers of the Origin and Harvesting Period for Discrimination of Bee Pollen by UPLC-MS/MS. Foods, 2022, 11, 1446.	4.3	7
3	A Case Report of Chronic Stress in Honey Bee Colonies Induced by Pathogens and Acaricide Residues. Pathogens, 2021, 10, 955.	2.8	8
4	CSI Pollen: Diversity of Honey Bee Collected Pollen Studied by Citizen Scientists. Insects, 2021, 12, 987.	2.2	9
5	Differentiation of bee pollen samples according to their intact-glucosinolate content using canonical discriminant analysis. LWT - Food Science and Technology, 2020, 129, 109559.	5.2	7
6	Viper's bugloss (Echium spp.) honey typing and establishing the pollen threshold for monofloral honey. PLoS ONE, 2017, 12, e0185405.	2.5	7
7	Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Spanish Journal of Agricultural Research, 2017, 15, e0501.	0.6	13
8	How soil type (gypsum or limestone) influences the properties and composition of thyme honey. SpringerPlus, 2016, 5, 1663.	1.2	8
9	Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy. Computers and Electronics in Agriculture, 2015, 110, 56-69.	7.7	20
10	Automated pollen identification using microscopic imaging and texture analysis. Micron, 2015, 68, 36-46.	2.2	66
11	Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Research Notes, 2014, 7, 649.	1.4	72
12	Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control, 2014, 37, 362-370.	5.5	56
13	Analysis of Water-Soluble Vitamins in Honey by Isocratic RP-HPLC. Food Analytical Methods, 2013, 6, 488-496.	2.6	35
14	Antioxidant, antibacterial and ACE-inhibitory activity of four monofloral honeys in relation to their chemical composition. Food and Function, 2013, 4, 1617.	4.6	31
15	Predicting the natural vegetation in a region by comparing the pollen in two biological vectors: bryophytes and honey. Grana, 2013, 52, 136-146.	0.8	4
16	The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Research in Veterinary Science, 2012, 93, 150-155.	1.9	49
17	Vitamin C and Sugar Levels as Simple Markers for Discriminating Spanish Honey Sources. Journal of Food Science, 2011, 76, C356-61.	3.1	42
18	An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain. Pest Management Science, 2011, 67, 1320-1331.	3.4	15

AMELIA VIRGINIA

#	Article	IF	CITATIONS
19	Natural infection by <i>Nosema ceranae</i> causes similar lesions as in experimentally infected caged-worker honey bees (<i>Apis mellifera</i>). Journal of Apicultural Research, 2010, 49, 278-283.	1.5	37
20	Virus infections and winter losses of honey bee colonies (<i>Apis mellifera</i>). Journal of Apicultural Research, 2010, 49, 60-65.	1.5	122
21	Overview of Pesticide Residues in Stored Pollen and Their Potential Effect on Bee Colony (Apis) Tj ETQq1 1 0.784	314 rgBT	Oygrlock I
22	A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environmental Microbiology Reports, 2010, 2, 243-250.	2.4	105
23	Honeybee colony collapse due to <i>Nosema ceranae</i> in professional apiaries. Environmental Microbiology Reports, 2009, 1, 110-113.	2.4	255
24	How natural infection by <i>Nosema ceranae</i> causes honeybee colony collapse. Environmental Microbiology, 2008, 10, 2659-2669.	3.8	570
25	Computer-aided identification of allergenic species of Urticaceae pollen. Grana, 2004, 43, 224-230.	0.8	15