
Nicolas Singewald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2474259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Novel Analogue of Modafinil CE-158 Protects Social Memory against Interference and Triggers the Release of Dopamine in the Nucleus Accumbens of Mice. Biomolecules, 2022, 12, 506.	1.8	4
2	Social interaction reward in rats has antiâ€stress effects. Addiction Biology, 2021, 26, e12878.	1.4	21
3	Microglial ablation in rats disrupts the circadian system. FASEB Journal, 2021, 35, e21195.	0.2	30
4	Shortâ€ŧerm meditation training influences brain energy metabolism: A pilot study on ³¹ P MR spectroscopy. Brain and Behavior, 2021, 11, e01914.	1.0	4
5	Altered sleep behavior in a genetic mouse model of impaired fear extinction. Scientific Reports, 2021, 11, 8978.	1.6	10
6	Brain Energy Metabolism in Two States of Mind Measured by Phosphorous Magnetic Resonance Spectroscopy. Frontiers in Human Neuroscience, 2021, 15, 686433.	1.0	3
7	Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Molecular Psychiatry, 2021, 26, 7076-7090.	4.1	19
8	Central amygdala micro-circuits mediate fear extinction. Nature Communications, 2021, 12, 4156.	5.8	38
9	Structure–Activity Relationships of Novel Thiazole-Based Modafinil Analogues Acting at Monoamine Transporters. Journal of Medicinal Chemistry, 2020, 63, 391-417.	2.9	23
10	The Good, the Bad and the Unknown Aspects of Ghrelin in Stress Coping and Stress-Related Psychiatric Disorders. Frontiers in Synaptic Neuroscience, 2020, 12, 594484.	1.3	26
11	Neuroinflammatory alterations in trait anxiety: modulatory effects of minocycline. Translational Psychiatry, 2020, 10, 256.	2.4	39
12	Cortical reorganization processes in meditation naÃ⁻ve participants induced by 7 weeks focused attention meditation training. Behavioural Brain Research, 2020, 395, 112828.	1.2	12
13	Effects of ghrelin receptor activation on forebrain dopamine release, conditioned fear and fear extinction in C57BL/6J mice. Journal of Neurochemistry, 2020, 154, 389-403.	2.1	8
14	On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. ELife, 2020, 9, .	2.8	24
15	Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. , 2019, 204, 107402.		132
16	Effects of disrupted ghrelin receptor function on fear processing, anxiety and saccharin preference in mice. Psychoneuroendocrinology, 2019, 110, 104430.	1.3	13
17	Role of MicroRNAs in Anxiety and Anxiety-Related Disorders. Current Topics in Behavioral Neurosciences, 2019, 42, 185-219.	0.8	22
18	Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning. Neuron, 2019, 104, 781-794.e4.	3.8	24

#	Article	IF	CITATIONS
19	Epigenetic Mechanisms Within the Cingulate Cortex Regulate Innate Anxiety-Like Behavior. International Journal of Neuropsychopharmacology, 2019, 22, 317-328.	1.0	18
20	Differential Effects of Novel Dopamine Reuptake Inhibitors on Interference With Long-Term Social Memory in Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 63.	1.0	16
21	Role for Chromatin Remodeling Factor Chd1 in Learning and Memory. Frontiers in Molecular Neuroscience, 2019, 12, 3.	1.4	13
22	Increased amygdalar metabotropic glutamate receptor 7 mRNA in a genetic mouse model of impaired fear extinction. Psychopharmacology, 2019, 236, 265-272.	1.5	4
23	Rodent models of impaired fear extinction. Psychopharmacology, 2019, 236, 21-32.	1.5	80
24	Potential of microRNAs as novel targets in the alleviation of pathological fear. Genes, Brain and Behavior, 2018, 17, e12427.	1.1	15
25	MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice. Biological Psychiatry, 2017, 81, 979-989.	0.7	59
26	Individual differences in stress susceptibility and stress inhibitory mechanisms. Current Opinion in Behavioral Sciences, 2017, 14, 54-64.	2.0	90
27	New pharmacological strategies for augmenting extinction learning in anxiety disorders. E-Neuroforum, 2017, 23, A145-A156.	0.2	3
28	Neue pharmakologische Strategien zur Augmentation von Extinktionslernen in der Angsttherapie. E-Neuroforum, 2017, 23, 197-211.	0.2	0
29	Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTRexon IVâ^'/â^' Mice. Frontiers in Behavioral Neuroscience, 2016, 10, 103.	1.0	14
30	Increased cocaine-induced conditioned place preference during periadolescence in maternally separated male BALB/c mice: the role of cortical BDNF, microRNA-212, and MeCP2. Psychopharmacology, 2016, 233, 3279-3288.	1.5	30
31	Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Translational Psychiatry, 2016, 6, e974-e974.	2.4	53
32	Dysregulation of select ATP-dependent chromatin remodeling factors in high trait anxiety. Behavioural Brain Research, 2016, 311, 141-146.	1.2	14
33	Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies. Neuropharmacology, 2016, 109, 306-319.	2.0	33
34	Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior. Annals of Medicine, 2016, 48, 17-27.	1.5	22
35	Combined Neuropeptide S and D-Cycloserine Augmentation Prevents the Return of Fear in Extinction-Impaired Rodents: Advantage of Dual versus Single Drug Approaches. International Journal of Neuropsychopharmacology, 2016, 19, pyv128.	1.0	27
36	Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study. Brain Structure and Function, 2016, 221, 3521-3546.	1.2	17

#	Article	IF	CITATIONS
37	Satb2 determines miRNA expression and long-term memory in the adult central nervous system. ELife, 2016, 5, .	2.8	68
38	Impaired Contextual Fear Extinction Learning is Associated with Aberrant Regulation of CHD-Type Chromatin Remodeling Factors. Frontiers in Behavioral Neuroscience, 2015, 9, 313.	1.0	9
39	Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain. Frontiers in Cellular Neuroscience, 2015, 9, 309.	1.8	41
40	Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. Journal of Neurophysiology, 2015, 114, 2500-2508.	0.9	13
41	Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. , 2015, 149, 150-190.		340
42	Durable fear memories require PSD-95. Molecular Psychiatry, 2015, 20, 901-912.	4.1	64
43	Prefrontal inputs to the amygdala instruct fear extinction memory formation. Science Advances, 2015, 1, .	4.7	181
44	Selective Breeding for High Anxiety Introduces a Synonymous SNP That Increases Neuropeptide S Receptor Activity. Journal of Neuroscience, 2015, 35, 4599-4613.	1.7	50
45	Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nature Communications, 2015, 6, 8466.	5.8	139
46	The L-type calcium channel Cav1.3 is required for proper hippocampal neurogenesis and cognitive functions. Cell Calcium, 2015, 58, 606-616.	1.1	55
47	GPR39 Zn2+-sensing receptor: A new target in antidepressant development?. Journal of Affective Disorders, 2015, 174, 89-100.	2.0	38
48	Dietary magnesium restriction reduces amygdala–hypothalamic GluN1 receptor complex levels in mice. Brain Structure and Function, 2015, 220, 2209-2221.	1.2	16
49	Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice. Frontiers in Behavioral Neuroscience, 2014, 8, 175.	1.0	10
50	Increased conditioned place preference for cocaine in high anxiety related behavior (HAB) mice is associated with an increased activation in the accumbens corridor. Frontiers in Behavioral Neuroscience, 2014, 8, 441.	1.0	14
51	Bidirectional rescue of extreme genetic predispositions to anxiety: impact of CRH receptor 1 as epigenetic plasticity gene in the amygdala. Translational Psychiatry, 2014, 4, e359-e359.	2.4	45
52	HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?. Biochemical Society Transactions, 2014, 42, 569-581.	1.6	99
53	Circadian abnormalities in a mouse model of high trait anxiety and depression. Annals of Medicine, 2014, 46, 148-154.	1.5	32
54	Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiology of Learning and Memory, 2014, 113, 69-81.	1.0	65

#	Article	IF	CITATIONS
55	S.20.02 Anxiety, depression and adult neurogenesis. European Neuropsychopharmacology, 2014, 24, S136-S137.	0.3	0
56	Pharmacophore Modeling, Virtual Screening, and <i>in Vitro</i> Testing Reveal Haloperidol, Eprazinone, and Fenbutrazate as Neurokinin Receptors Ligands. Journal of Chemical Information and Modeling, 2014, 54, 1747-1757.	2.5	13
57	Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy. Biology of Mood & Anxiety Disorders, 2013, 3, 13.	4.7	23
58	Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice. Neuropharmacology, 2013, 66, 274-289.	2.0	35
59	A Novel Animal Model to Study the InÂVivo Role of a C-Terminal Regulatory Domain in Cav1.3 L-Type Calcium Channels. Biophysical Journal, 2013, 104, 459a.	0.2	0
60	Oligodendroglial alpha-synucleinopathy and MSA-like cardiovascular autonomic failure: Experimental evidence. Experimental Neurology, 2013, 247, 531-536.	2.0	46
61	Inhibitory Function of the Dorsomedial Hypothalamic Nucleus on the Hypothalamic–Pituitary–Adrenal Axis Response to an Emotional Stressor but not Immune Challenge. Journal of Neuroendocrinology, 2013, 25, 48-55.	1.2	12
62	Individual differences in recovery from traumatic fear. Trends in Neurosciences, 2013, 36, 23-31.	4.2	120
63	Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model. Neuropharmacology, 2013, 64, 414-423.	2.0	67
64	Single dose of <scp>l</scp> -dopa makes extinction memories context-independent and prevents the return of fear. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2428-36.	3.3	169
65	Behavioral and Neurobiological Effects of Deep Brain Stimulation in a Mouse Model of High Anxiety- and Depression-Like Behavior. Neuropsychopharmacology, 2013, 38, 1234-1244.	2.8	70
66	Anxiety- rather than depression-like behavior is associated with adult neurogenesis in a female mouse model of higher trait anxiety- and comorbid depression-like behavior. Translational Psychiatry, 2012, 2, e171-e171.	2.4	57
67	Neuropeptide S alters anxiety, but not depression-like behaviour in Flinders Sensitive Line rats: a genetic animal model of depression. International Journal of Neuropsychopharmacology, 2012, 15, 375-387.	1.0	53
68	Aldosterone increases earlier than corticosterone in new animal models of depression: Is this an early marker?. Journal of Psychiatric Research, 2012, 46, 1394-1397.	1.5	23
69	Magnesium deficiency induces anxiety and HPA axis dysregulation: Modulation by therapeutic drug treatment. Neuropharmacology, 2012, 62, 304-312.	2.0	117
70	Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety. Neurobiology of Learning and Memory, 2012, 98, 56-65.	1.0	27
71	The galanin system in depression and antidepressant treatment: focus on the locus coeruleus. BMC Pharmacology & Toxicology, 2012, 13, .	1.0	0
72	Histone deacetylase inhibitors, glutamatergic drugs and deep brain stimulation rescue resistance to fear extinction in a genetic mouse model. BMC Pharmacology & Toxicology, 2012, 13, .	1.0	0

#	Article	IF	CITATIONS
73	Neurobiological correlates of successful deep brain stimulation in a mouse model of high trait affect. BMC Pharmacology & Toxicology, 2012, 13, .	1.0	0
74	A mouse model to study the C-terminal regulation of CaV1.3 L-type calcium channels. BMC Pharmacology & Toxicology, 2012, 13, .	1.0	0
75	Genetic Strain Differences in Learned Fear Inhibition Associated with Variation in Neuroendocrine, Autonomic, and Amygdala Dendritic Phenotypes. Neuropsychopharmacology, 2012, 37, 1534-1547.	2.8	93
76	Sub-chronic dietary tryptophan depletion – An animal model of depression with improved face and good construct validity. Journal of Psychiatric Research, 2012, 46, 239-247.	1.5	30
77	Potential anxiolytics acting via the neuropeptide S-receptor. Planta Medica, 2012, 78, .	0.7	Ο
78	Altered GABA transmission in a mouse model of increased trait anxiety. Neuroscience, 2011, 183, 71-80.	1.1	71
79	S.24.02 Genetic variation driving fear and anxiety. European Neuropsychopharmacology, 2011, 21, S224.	0.3	0
80	S.24.03 Rodent models of impaired fear extinction: therapeutic approaches. European Neuropsychopharmacology, 2011, 21, S224.	0.3	1
81	Enhanced Fear Expression in a Psychopathological Mouse Model of Trait Anxiety: Pharmacological Interventions. PLoS ONE, 2011, 6, e16849.	1.1	53
82	Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids, 2011, 40, 1231-1248.	1.2	44
83	Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress. Amino Acids, 2011, 41, 991-996.	1.2	46
84	129S1/SvImJ mice display impaired contextual fear extinction, enhanced fear incubation and deficit extinction consolidation phenotypes: rescue via pharmacological and non-pharmacological treatments. BMC Pharmacology, 2011, 11, .	0.4	1
85	Modulation of magnesium deficiency-induced anxiety and HPA axis dysregulation by therapeutic drug treatment. BMC Pharmacology, 2011, 11, .	0.4	0
86	Fear learning induces structural and functional plasticity at GABAergic synapses in the basolateral amygdala. BMC Pharmacology, 2011, 11, A42.	0.4	0
87	Septal urocortin 3 modulates stress-coping behaviour but not hypothalamic-pituitary-adrenal axis activity during forced swimming. BMC Pharmacology, 2011, 11, .	0.4	0
88	Different Fear States Engage Distinct Networks within the Intercalated Cell Clusters of the Amygdala. Journal of Neuroscience, 2011, 31, 5131-5144.	1.7	118
89	The clinical implications of mouse models of enhanced anxiety. Future Neurology, 2011, 6, 531-571.	0.9	68
90	A mouse model of high trait anxiety shows reduced heart rate variability that can be reversed by anxiolytic drug treatment. International Journal of Neuropsychopharmacology, 2011, 14, 1341-1355.	1.0	33

#	Article	IF	CITATIONS
91	The Modulatory Role of the Lateral Septum on Neuroendocrine and Behavioral Stress Responses. Neuropsychopharmacology, 2011, 36, 793-804.	2.8	131
92	CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype. International Journal of Neuropsychopharmacology, 2010, 13, 499.	1.0	90
93	Fear learning triggers structural changes at GABAergic synapses in the basal amygdala. BMC Pharmacology, 2010, 10, .	0.4	1
94	Enhanced fear expression in a psychphathological mouse model of trait anxiety: pharmacological interventions. BMC Pharmacology, 2010, 10, .	0.4	2
95	Neuronal circuits of fear extinction. European Journal of Neuroscience, 2010, 31, 599-612.	1.2	412
96	The Central and Basolateral Amygdala Are Critical Sites of Neuropeptide Y/Y2 Receptor-Mediated Regulation of Anxiety and Depression. Journal of Neuroscience, 2010, 30, 6282-6290.	1.7	132
97	Rescue of Impaired Fear Extinction and Normalization of Cortico-Amygdala Circuit Dysfunction in a Genetic Mouse Model by Dietary Zinc Restriction. Journal of Neuroscience, 2010, 30, 13586-13596.	1.7	77
98	A Hypomorphic Vasopressin Allele Prevents Anxiety-Related Behavior. PLoS ONE, 2009, 4, e5129.	1.1	56
99	Prodynorphin-Derived Peptides Are Critical Modulators of Anxiety and Regulate Neurochemistry and Corticosterone. Neuropsychopharmacology, 2009, 34, 775-785.	2.8	143
100	Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids, 2009, 36, 147-158.	1.2	129
101	Effect of neuropeptide Y Y2 receptor deletion on emotional stressâ€induced neuronal activation in mice. Synapse, 2009, 63, 236-246.	0.6	11
102	Adult neurogenesis in a psychopathological mouse model of trait anxiety and comorbid depression-like behavior: effect of antidepressants. BMC Pharmacology, 2009, 9, .	0.4	0
103	CaV1.3 L-type calcium channels modulate depression-like behavior in mice independent of deaf phenotype. BMC Pharmacology, 2009, 9, .	0.4	0
104	Endogenous dynorphin in emotional control and stress response. BMC Pharmacology, 2009, 9, .	0.4	0
105	Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain. Genes, Brain and Behavior, 2009, 8, 744-752.	1.1	65
106	Serotonin1A-receptor-dependent signaling proteins in mouse hippocampus. Neuropharmacology, 2009, 57, 556-566.	2.0	4
107	Increased novelty-induced motor activity and reduced depression-like behavior in neuropeptide Y (NPY)–Y4 receptor knockout mice. Neuroscience, 2009, 158, 1717-1730.	1.1	72
108	Effect of chronic psychosocial stress-induced by subordinate colony (CSC) housing on brain neuronal activity patterns in mice. Stress, 2009, 12, 58-69.	0.8	75

#	Article	IF	CITATIONS
109	Tachykinin Receptors as Therapeutic Targets in Stress-Related Disorders. Current Pharmaceutical Design, 2009, 15, 1647-1674.	0.9	109
110	Differential Stress-Induced Neuronal Activation Patterns in Mouse Lines Selectively Bred for High, Normal or Low Anxiety. PLoS ONE, 2009, 4, e5346.	1.1	65
111	Individual contribution of metabotropic glutamate receptor (mGlu) 2 and 3 to c-Fos expression pattern evoked by mGlu2/3 antagonism. Psychopharmacology, 2008, 201, 1-13.	1.5	18
112	Chronic treatment with a selective neurokinin-1 receptor antagonist in a mouse model of trait anxiety and depression: focus on behaviour and neuropeptidergic mechanisms. BMC Pharmacology, 2008, 8, .	0.4	1
113	Substance P in Stress and Anxiety. Annals of the New York Academy of Sciences, 2008, 1144, 61-73.	1.8	81
114	Reduced anxietyâ€like and depressionâ€related behavior in neuropeptide Y Y4 receptor knockout mice. Genes, Brain and Behavior, 2008, 7, 532-542.	1.1	77
115	Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Molecular Psychiatry, 2008, 13, 1028-1042.	4.1	129
116	Modulation of basal and stressâ€induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist Lâ€822429. Journal of Neurochemistry, 2008, 106, 2476-2488.	2.1	49
117	Impaired extinction of learned fear in rats selectively bred for high anxiety – evidence of altered neuronal processing in prefrontalâ€amygdala pathways. European Journal of Neuroscience, 2008, 28, 2299-2309.	1.2	108
118	Impaired Fear Extinction Learning and Cortico-Amygdala Circuit Abnormalities in a Common Genetic Mouse Strain. Journal of Neuroscience, 2008, 28, 8074-8085.	1.7	231
119	Role of L-type Ca ²⁺ channel isoforms in the extinction of conditioned fear. Learning and Memory, 2008, 15, 378-386.	0.5	32
120	Neurokinin 1 Receptor Antagonism Promotes Active Stress Coping Via Enhanced Septal 5-HT Transmission. Neuropsychopharmacology, 2008, 33, 1929-1941.	2.8	45
121	Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: Regulation by oxytocin. Stress, 2007, 10, 261-270.	0.8	29
122	Fetal Down Syndrome Brains Exhibit Aberrant Levels of Neurotransmitters Critical for Normal Brain Development. Pediatrics, 2007, 120, e1465-e1471.	1.0	101
123	Induction of ΔFosB in the Periaqueductal Gray by Stress Promotes Active Coping Responses. Neuron, 2007, 55, 289-300.	3.8	114
124	Altered Brain Activation Pattern Associated With Drug-Induced Attenuation of Enhanced Depression-Like Behavior in Rats Bred for High Anxiety. Biological Psychiatry, 2007, 61, 782-796.	0.7	73
125	Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I. Neuroscience and Biobehavioral Reviews, 2007, 31, 89-102.	2.9	167
126	Diabetes insipidus and, partially, low anxietyâ€related behaviour are linked to a SNPâ€associated vasopressin deficit in LAB mice. European Journal of Neuroscience, 2007, 26, 2857-2864.	1.2	34

#	Article	IF	CITATIONS
127	Stress-induced release of substance P in the locus coeruleus modulates cortical noradrenaline release. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 376, 73-82.	1.4	33
128	Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neuroscience and Biobehavioral Reviews, 2007, 31, 18-40.	2.9	91
129	Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochemical Society Transactions, 2006, 34, 903-909.	1.6	161
130	Sinoaortic denervation abolishes blood pressure-induced GABA release in the locus coeruleus of conscious rats. Neuroscience Letters, 2006, 393, 194-199.	1.0	11
131	Airjet and FG-7142-induced Fos expression differs in rats selectively bred for high and low anxiety-related behavior. Neuropharmacology, 2006, 50, 1048-1058.	2.0	38
132	Brain activation pattern induced by stimulation of L-type Ca2+-channels: Contribution of CaV1.3 and CaV1.2 isoforms. Neuroscience, 2006, 139, 1005-1015.	1.1	54
133	Genetic predisposition to anxiety-related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat Behavioral Neuroscience, 2006, 120, 60-71.	0.6	104
134	The role of substance P in stress and anxiety responses. Amino Acids, 2006, 31, 251-272.	1.2	256
135	5-HT receptor subtypes involved in the anxiogenic-like action and associated Fos response of acute fluoxetine treatment in rats. Psychopharmacology, 2006, 185, 282-288.	1.5	28
136	Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge. Psychopharmacology, 2006, 188, 374-385.	1.5	30
137	Stereoselective and region-specific induction of immediate early gene expression in rat parietal cortex by blockade of neurokinin 1 receptors. Journal of Psychopharmacology, 2006, 20, 570-576.	2.0	2
138	Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. Journal of Neurochemistry, 2005, 92, 1170-1179.	2.1	74
139	Release of Oxytocin in the Rat Central Amygdala Modulates Stress-Coping Behavior and the Release of Excitatory Amino Acids. Neuropsychopharmacology, 2005, 30, 223-230.	2.8	173
140	Substance P in the medial amygdala: Emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4280-4285.	3.3	201
141	Impaired Repression at a Vasopressin Promoter Polymorphism Underlies Overexpression of Vasopressin in a Rat Model of Trait Anxiety. Journal of Neuroscience, 2004, 24, 7762-7770.	1.7	137
142	Genetic functional inactivation of neuronal nitric oxide synthase affects stress-related Fos expression in specific brain regions. Cellular and Molecular Life Sciences, 2004, 61, 1498-1506.	2.4	22
143	Differential amino acid transmission in the locus coeruleus of Wistar Kyoto and spontaneously hypertensive rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 381-387.	1.4	12
144	Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): differential Fos expression in HAB and LAB rats. Biological Psychiatry, 2004, 55, 715-723.	0.7	121

#	Article	IF	CITATIONS
145	Decreased social interaction in aged rats may not reflect changes in anxiety-related behaviour. Behavioural Brain Research, 2004, 151, 1-8.	1.2	74
146	Evaluation of the effect of chronic antidepressant treatment on neurokinin-1 receptor expression in the rat brain. Neuropharmacology, 2004, 46, 1177-1183.	2.0	10
147	Magnesium-deficient diet alters depression- and anxiety-related behavior in mice—influence of desipramine and Hypericum perforatum extract. Neuropharmacology, 2004, 47, 1189-1197.	2.0	139
148	High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. NeuroImage, 2004, 23, 382-391.	2.1	67
149	Isoform-specific regulation of mood behavior and pancreatic \hat{I}^2 cell and cardiovascular function by L-type Ca2+ channels. Journal of Clinical Investigation, 2004, 113, 1430-1439.	3.9	168
150	Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. European Journal of Neuroscience, 2003, 18, 143-148.	1.2	173
151	Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biological Psychiatry, 2003, 53, 275-283.	0.7	300
152	Neuroanatomical substrates involved in the anxiogenic-like effect of acute fluoxetine treatment. Neuropharmacology, 2002, 43, 1238-1248.	2.0	58
153	Reliability of high and low anxiety-related behaviour:. Behavioural Brain Research, 2002, 136, 227-237.	1.2	54
154	Differences between GABA levels in Alzheimer's disease and Down syndrome with Alzheimer-like neuropathology. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 139-145.	1.4	95
155	Role of nitric oxide in the stress-induced release of serotonin in the locus coeruleus. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 105-109.	1.4	18
156	Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. European Journal of Neuroscience, 2000, 12, 3713-3720.	1.2	146
157	Release of glutamate and GABA in the amygdala of conscious rats by acute stress and baroreceptor activation: differences between SHR and WKY rats. Brain Research, 2000, 864, 138-141.	1.1	36
158	Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Neuroscience, 2000, 98, 759-770.	1.1	141
159	Peripheral chemoreceptor activation enhances 5-hydroxytryptamine release in the locus coeruleus of conscious rats. Neuroscience Letters, 2000, 289, 17-20.	1.0	6
160	Effects of local MAO inhibition in the locus coeruleus on extracellular serotonin and 5-HIAA during exposure to sensory and cardiovascular stimuli. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 187-193.	1.4	8
161	The release of catecholamines in hypothalamus and locus coeruleus is modulated by peripheral chemoreceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 428-434.	1.4	16
162	Noradrenaline release in the locus coeruleus of conscious rats is triggered by drugs, stress and blood pressure changes. NeuroReport, 1999, 10, 1583-1587.	0.6	34

#	Article	IF	CITATIONS
163	Serotonin (5-HT) in brains of adult patients with Down Syndrome. , 1999, 57, 221-232.		29
164	Release of neurotransmitters in the locus coeruleus. Progress in Neurobiology, 1998, 56, 237-267.	2.8	174
165	Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. British Journal of Pharmacology, 1998, 123, 746-752.	2.7	31
166	Release of Serotonin in the Rat Locus Coeruleus: Effects of Cardiovascular, Stressful and Noxious Stimuli. European Journal of Neuroscience, 1997, 9, 556-562.	1.2	50
167	The release of inhibitory amino acids in the hypothalamus is tonically modified by impulses from aortic baroreceptors as a consequence of blood pressure fluctuations. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 348-355.	1.4	18
168	Corticotropin-releasing factor modulates basal and stress-induced excitatory amino acid release in the locus coeruleus of conscious rats. Neuroscience Letters, 1996, 204, 45-48.	1.0	28
169	Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends in Pharmacological Sciences, 1996, 17, 356-363.	4.0	76
170	Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. , 1996, 17, 356-356.		22
171	Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends in Pharmacological Sciences, 1996, 17, 356-63.	4.0	16
172	Inhibition of catecholamine (noradrenaline, dopamine) release in the locus coeruleus and the hypothalamus by baroreceptor activation: identification of the involved baroreceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 291-6.	1.4	16
173	Release of excitatory and inhibitory amino acids from the locus coeruleus of conscious rats by cardiovascular stimuli and various forms of acute stress. Brain Research, 1995, 704, 42-50.	1.1	64
174	Effects of neuroactive compounds, noxious and cardiovascular stimuli on the release of amino acids in the rat locus coeruleus. Neuroscience Letters, 1994, 180, 55-58.	1.0	19
175	Disturbances in blood pressure homeostasis modify GABA release in the locus coeruleus. NeuroReport, 1994, 5, 1709-1712.	0.6	15
176	Release of endogenous GABA in the posterior hypothalamus of the conscious rat; effects of drugs and experimentally induced blood pressure changes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 402-406.	1.4	25
177	Catecholamine release in the locus coeruleus is modified by experimentally induced changes in haemodynamics. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 21-7.	1.4	33
178	Effects of blood pressure changes on the catecholamine release in the locus coeruleus of cats anaesthetized with pentobarbital or chloralose. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 242-8.	1.4	23