Han Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2474185/han-zhang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60,386 128 968 210 h-index g-index citations papers 74,268 8.42 8.4 1,032 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
968	Photodetectors Based on MoS2/MAPbBr3 Van der Waals Heterojunction. <i>IEEE Electron Device Letters</i> , 2022 , 1-1	4.4	1
967	Optical Properties of Few-Layer TiCN MXene: From Experimental Observations to Theoretical Calculations <i>ACS Nano</i> , 2022 ,	16.7	6
966	All-optical logic devices based on black arsenicphosphorus with strong nonlinear optical response and high stability. <i>Opto-Electronic Advances</i> , 2022 , 5, 200046-200046	6.5	6
965	Four-wave mixing in graphdiyne-microfiber based on synchronized dual-wavelength pulses. <i>Photonics Research</i> , 2022 , 10, 503	6	O
964	Wavelength tunable Q-switched Er-doped fiber laser based on ZrSe2. <i>Optics and Laser Technology</i> , 2022 , 147, 107598	4.2	2
963	TiCN MXene-based ultra-sensitive optical fiber salinity sensor Optics Letters, 2022, 47, 138-141	3	0
962	All-Optical Modulation Technology Based on 2D Layered Materials <i>Micromachines</i> , 2022 , 13,	3.3	2
961	PtSe2 as a wideband saturable absorber for passively Q-switched high-power mid-infrared fiber laser. <i>IEEE Photonics Technology Letters</i> , 2022 , 1-1	2.2	1
960	Co, N-doped carbon dot nanozymes with acid pH-independence and substrate selectivity for biosensing and bioimaging. <i>Sensors and Actuators B: Chemical</i> , 2022 , 353, 131150	8.5	3
959	Constructing holey Fe2O3 nanosheets with enhanced capability for microwave absorption. <i>Materials Today Chemistry</i> , 2022 , 23, 100690	6.2	0
958	High-performance polarization-sensitive photodetectors on two-dimensional -InSe <i>National Science Review</i> , 2022 , 9, nwab098	10.8	13
957	Narrow-bandgap materials for optoelectronics applications. Frontiers of Physics, 2022, 17, 1	3.7	5
956	A Highly Sensitive CRISPR-Empowered Surface Plasmon Resonance Sensor for Diagnosis of Inherited Diseases with Femtomolar-Level Real-Time Quantification <i>Advanced Science</i> , 2022 , e2105231	1 ^{13.6}	2
955	Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles <i>Materials Today Bio</i> , 2022 , 14, 100236	9.9	0
954	Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. <i>Nanophotonics</i> , 2022 , 11, 126	16.13284	45
953	Upregulation of Endothelial DKK1 (Dickkopf 1) Promotes the Development of Pulmonary Hypertension Through the Sp1 (Specificity Protein 1)/SHMT2 (Serine Hydroxymethyltransferase 2) Pathway <i>Hypertension</i> , 2022 , HYPERTENSIONAHA12118672	8.5	O
952	A Fully Integrated Flexible Tunable Chemical Sensor Based on Gold-Modified Indium Selenide Nanosheets <i>ACS Sensors</i> , 2022 ,	9.2	4

(2021-2022)

951	Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 911, 116239	4.1	2	
950	New insights to atherosclerosis management: Role of nanomaterials. <i>Applied Materials Today</i> , 2022 , 27, 101466	6.6	Ο	
949	2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy <i>Bioactive Materials</i> , 2022 , 14, 76-85	16.7	8	
948	Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment <i>Bioactive Materials</i> , 2022 , 15, 194-202	16.7	4	
947	Additive-mediated intercalation and surface modification of MXenes <i>Chemical Society Reviews</i> , 2022 ,	58.5	9	
946	Thrombin induces morphological and inflammatory astrocytic responses via activation of PAR1 receptor <i>Cell Death Discovery</i> , 2022 , 8, 189	6.9	Ο	
945	Efficient flexible quantum-dot light-emitting diodes with unipolar charge injection <i>Optics Express</i> , 2022 , 30, 15747-15756	3.3	О	
944	Recent advances and challenges on dark solitons in fiber lasers. <i>Optics and Laser Technology</i> , 2022 , 152, 108116	4.2	1	
943	An Assessment of MXenes through Scanning Probe Microscopy Small Methods, 2022, e2101599	12.8	O	
942	Ultrafast carrier dynamics in CdS@CdSe core-shell quantum dot heterostructure. <i>Optical Materials</i> , 2022 , 128, 112367	3.3	O	
941	Optical-intensity modulators with PbTe thermoelectric nanopowders for ultrafast photonics. <i>Applied Materials Today</i> , 2022 , 28, 101546	6.6	8	
940	Effects of ultrasonication on the microstructures and mechanical properties of carbon nanotube films and their based composites. <i>Composites Science and Technology</i> , 2021 , 109136	8.6	Ο	
939	Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures. 2D Materials, 2021 , 8, 012001	5.9	5	
938	A multifunctional 2D black phosphorene-based platform for improved photovoltaics. <i>Chemical Society Reviews</i> , 2021 , 50, 13346-13371	58.5	Ο	
937	Two-dimensional materials toward Terahertz optoelectronic device applications. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2021 , 51, 100473	16.4	5	
936	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. <i>Chemical Reviews</i> , 2021 ,	68.1	23	
935	Recent Advances in Oxidation Stable Chemistry of Two-Dimensional MXenes. <i>Advanced Materials</i> , 2021 , e2107554	24	19	
934	Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. <i>Progress in Solid State Chemistry</i> , 2021 , 100336	8	3	

933	Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	4
932	A Facile Approach for Elemental-Doped Carbon Quantum Dots and Their Application for Efficient Photodetectors. <i>Small</i> , 2021 , e2105683	11	7
931	Bioengineering applications of black phosphorus and their toxicity assessment. <i>Environmental Science: Nano</i> , 2021 , 8, 3452-3477	7.1	6
930	Enhanced charge-transfer induced by conduction band electrons in aluminum-doped zinc oxide/molecule/Ag sandwich structures observed by surface-enhanced Raman spectroscopy Journal of Colloid and Interface Science, 2021, 610, 164-172	9.3	Ο
929	Recent development in graphdiyne and its derivative materials for novel biomedical applications. Journal of Materials Chemistry B, 2021 , 9, 9461-9484	7-3	3
928	Recent Progress on Two-Dimensional Materials. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2021 , 2108017-0	3.8	69
927	A Regioselectively Oxidized 2D Bi/BiOx Lateral Nano-Heterostructure for Hypoxic Photodynamic Therapy. <i>Advanced Materials</i> , 2021 , e2102562	24	16
926	Point and complex defects in monolayer PdSe2: Evolution of electronic structure and emergence of magnetism. <i>Physical Review B</i> , 2021 , 104,	3.3	4
925	Material-based engineering of bacteria for cancer diagnosis and therapy. <i>Applied Materials Today</i> , 2021 , 25, 101212	6.6	1
924	Conducting polymer-inorganic nanocomposite-based gas sensors: a review. <i>Science and Technology of Advanced Materials</i> , 2021 , 21, 768-786	7.1	31
923	Fiber-based all-optical modulation based on two-dimensional materials. 2D Materials, 2021, 8, 012003	5.9	3
922	Emerging intrinsic magnetism in two-dimensional materials: theory and applications. <i>2D Materials</i> , 2021 , 8, 012005	5.9	11
921	Phase Transitions and Water Splitting Applications of 2D Transition Metal Dichalcogenides and Metal Phosphorous Trichalcogenides. <i>Advanced Science</i> , 2021 , 8, 2002284	13.6	18
920	Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. <i>Biomaterials</i> , 2021 , 270, 120682	15.6	7
919	A review on the electroluminescence properties of quantum-dot light-emitting diodes. <i>Organic Electronics</i> , 2021 , 90, 106086	3.5	26
918	Signal processing assisted Vernier effect in a single interferometer for sensitivity magnification. <i>Optics Express</i> , 2021 , 29, 11570-11581	3.3	11
917	Engineering of bioactive metal sulfide nanomaterials for cancer therapy. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 93	9.4	8
916	Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. <i>PeerJ</i> , 2021 , 9, e11022	3.1	1

(2021-2021)

915	2D Materials Enabled Next-Generation Integrated Optoelectronics: from Fabrication to Applications. <i>Advanced Science</i> , 2021 , 8, e2003834	13.6	13	
914	Polymer Nanocomposites for Temperature Sensing and Self-regulating Heating Devices 2021 , 247-266			
913	Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review. <i>Journal of Materiomics</i> , 2021 ,	6.7	27	
912	Perspectives on solution processing of two-dimensional MXenes. <i>Materials Today</i> , 2021 , 48, 214-214	21.8	51	
911	Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. <i>ACS Nano</i> , 2021 , 15, 6900-6908	16.7	23	
910	An Insightful Picture of Nonlinear Photonics in 2D Materials and their Applications: Recent Advances and Future Prospects. <i>Advanced Optical Materials</i> , 2021 , 9, 2001671	8.1	2	
909	Symmetry-Broken Aullu Heterostructures and their Tandem Catalysis Process in Electrochemical CO2 Reduction. <i>Advanced Functional Materials</i> , 2021 , 31, 2101255	15.6	18	
908	Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of -Phenylenediamine. <i>ACS Applied Materials & Description of Active Photooxidation of Phenylenediamine</i> .	9.5	4	
907	Synergistic Photothermal and Chemical Therapy by Smart Dual-Functional Graphdiyne Nanosheets for Treatment of Parkinson's Disease. <i>Advanced Therapeutics</i> , 2021 , 4, 2100082	4.9	5	
906	Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 160	9.4	19	
905	2D III-Nitride Materials: Properties, Growth, and Applications. <i>Advanced Materials</i> , 2021 , 33, e2006761	24	18	
904	Repression of Interlayer Recombination by Graphene Generates a Sensitive Nanostructured 2D vdW Heterostructure Based Photodetector. <i>Advanced Science</i> , 2021 , 8, e2100503	13.6	13	
903	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 3447-3464	15.5	9	
902	Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. <i>Coordination Chemistry Reviews</i> , 2021 , 435, 213781	23.2	23	
901	Magnetic black phosphorus microbubbles for targeted tumor theranostics. <i>Nanophotonics</i> , 2021 , 10, 3339-3358	6.3	6	
900	Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications. <i>Biomedical Materials (Bristol)</i> , 2021 , 16,	3.5	2	
899	2D Materials for Nonlinear Photonics and Electro-Optical Applications. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100367	4.6	10	
898	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. <i>Advanced Materials Technologies</i> , 2021 , 6, 2001197	6.8	5	

897	Two-photon structured illumination microscopy imaging using Fourier ptychography scheme. <i>Optics Communications</i> , 2021 , 489, 126872	2	2
896	A novel NIR-responsive CO gas-releasing and hyperthermia-generating nanomedicine provides a curative approach for cancer therapy. <i>Nano Today</i> , 2021 , 38, 101197	17.9	7
895	Dynamic behaviors of multiple-soliton pulsation in an L-band passively mode-locked fiber laser with anomalous dispersion. <i>Chaos</i> , 2021 , 31, 063122	3.3	1
894	MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers. <i>Optical Materials Express</i> , 2021 , 11, 1898	2.6	4
893	Broadband and ultrafast all-optical switching based on transition metal carbide. <i>Nanophotonics</i> , 2021 , 10, 2617-2623	6.3	1
892	Broadband, High-Sensitivity Graphene Photodetector Based on Ferroelectric Polarization of Lithium Niobate. <i>Advanced Optical Materials</i> , 2021 , 9, 2100245	8.1	3
891	Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors. <i>Nanophotonics</i> , 2021 , 10, 2519-2535	6.3	1
890	NIR-II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. <i>Advanced Functional Materials</i> , 2021 , 31, 2101625	15.6	23
889	Facet- and Gas-Dependent Reshaping of Au Nanoplates by Plasma Treatment. ACS Nano, 2021, 15, 9860)- 198 70	О
888	Quantum tunneling in two-dimensional van der Waals heterostructures and devices. <i>Science China Materials</i> , 2021 , 64, 2359-2387	7.1	5
887	Frontiers in Electronic and Optoelectronic Devices Based on 2D Materials. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100444	6.4	1
886	Black Phosphorus/Polymers: Status and Challenges. <i>Advanced Materials</i> , 2021 , 33, e2100113	24	10
885	Defect Engineering in Ultrathin SnSe Nanosheets for High-Performance Optoelectronic Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 33226-33236	9.5	11
884	PN junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. <i>Nano Energy</i> , 2021 , 85, 105938	17.1	8
883	Nonlinear optical property and mid-infrared Q-switched laser application at 2.8 h of PtSe2 material. <i>Optics and Laser Technology</i> , 2021 , 139, 106983	4.2	4
882	Short-pulsed Raman fiber laser and its dynamics. <i>Science China: Physics, Mechanics and Astronomy</i> , 2021 , 64, 1	3.6	18
881	Insights from nanotechnology in COVID-19 treatment. <i>Nano Today</i> , 2021 , 36, 101019	17.9	82
88o	Trajectory and image-based detection and identification of UAV. Visual Computer, 2021, 37, 1769-1780	2.3	3

(2021-2021)

879	MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. <i>Science China Materials</i> , 2021 , 64, 259-265	7.1	11
878	Booming development and present advances of two dimensional MXenes for photodetectors. <i>Chemical Engineering Journal</i> , 2021 , 403, 126336	14.7	19
877	Borophene-based biomedical applications: Status and future challenges. <i>Coordination Chemistry Reviews</i> , 2021 , 427, 213549	23.2	21
876	Carbon-based nanozymes for biomedical applications. <i>Nano Research</i> , 2021 , 14, 570-583	10	40
875	Transition Metal Dichalcogenides for Sensing and Oncotherapy: Status, Challenges, and Perspective. <i>Advanced Functional Materials</i> , 2021 , 31, 2004408	15.6	17
874	Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. <i>Progress in Solid State Chemistry</i> , 2021 , 61, 100294	ı ⁸	11
873	Recent progress, challenges, and prospects in emerging group-VIA Xenes: synthesis, properties and novel applications. <i>Nanoscale</i> , 2021 , 13, 510-552	7.7	9
872	Status and Outlook of Metal I horganic Semiconductor M etal Photodetectors. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000401	8.3	23
871	Boosting Faradic efficiency of dinitrogen reduction on the negatively charged Mo sites modulated via interstitial Fe doping into a Mo2C nanowall catalyst. <i>Chemical Engineering Journal</i> , 2021 , 417, 12792	4 ^{14.7}	3
870	Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. <i>Coordination Chemistry Reviews</i> , 2021 , 432, 213697	23.2	2
869	MXene Ti3C2Tx (T´=´F, O, or OH) saturable absorber for a 2 th doubly Q-switched laser with AOM. <i>Optics and Laser Technology</i> , 2021 , 134, 106642	4.2	4
868	Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. <i>Nano Today</i> , 2021 , 36, 101023	17.9	16
867	Emerging Mono-Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. <i>Advanced Functional Materials</i> , 2021 , 31, 2007584	15.6	17
866	Ultrafast Surface Plasmon Resonance Imaging Sensor via the High-Precision Four-Parameter-Based Spectral Curve Readjusting Method. <i>Analytical Chemistry</i> , 2021 , 93, 828-833	7.8	6
865	Graphene/MoS2/Graphene Vertical Heterostructure-Based Broadband Photodetector with High Performance. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001730	4.6	18
864	Two-Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. <i>Small Science</i> , 2021 , 1, 2000053		23
863	Recent advances on TMDCs for medical diagnosis. <i>Biomaterials</i> , 2021 , 269, 120471	15.6	10
862	Recent advances in anisotropic two-dimensional materials and device applications. <i>Nano Research</i> , 2021 , 14, 897-919	10	32

861	Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. <i>Advanced Functional Materials</i> , 2021 , 31, 2005957	15.6	21
860	Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. <i>Advanced Functional Materials</i> , 2021 , 31, 2005471	15.6	10
859	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 927-936	16.4	24
858	Two-dimensional semiconducting antimonene in nanophotonic applications IA review. <i>Chemical Engineering Journal</i> , 2021 , 406, 126876	14.7	14
857	Exotic physical properties of 2D materials modulated by moir uperlattices. <i>Materials Advances</i> , 2021 , 2, 5542-5559	3.3	1
856	Recent Advances in 2D Layered Phosphorous Compounds <i>Small Methods</i> , 2021 , 5, e2001068	12.8	8
855	Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. <i>Chemical Society Reviews</i> , 2021 , 50, 9152-9201	58.5	56
854	Thermally tunable microfiber knot resonator with flexible graphene heater. <i>Chinese Optics Letters</i> , 2021 , 19, 051301	2.2	2
853	2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001743	10.1	33
852	Boron quantum dots all-optical modulator based on efficient photothermal effect. <i>Opto-Electronic Advances</i> , 2021 , 4, 200032-200032	6.5	4
851	Ti3C2Tx Nanosheets for High-Repetition-Rate Wideband-Tunable Q-Switched Fiber Laser Around 3 fb. <i>IEEE Photonics Technology Letters</i> , 2021 , 1-1	2.2	1
850	Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. <i>Advanced Science</i> , 2021 , 8, 2003033	13.6	30
849	Heterostructures of titanium-based MXenes in energy conversion and storage devices. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8395-8465	7.1	10
848	Ultra-Small 2D PbS Nanoplatelets: Liquid-Phase Exfoliation and Emerging Applications for Photo-Electrochemical Photodetectors. <i>Small</i> , 2021 , 17, e2005913	11	20
847	Graphdiyne nanosheets as a platform for accurate copper(ii) ion detection click chemistry and fluorescence resonance energy transfer <i>RSC Advances</i> , 2021 , 11, 5320-5324	3.7	2
846	Tailoring nanofibrillated cellulose through sonication and its potential use in molded pulp packaging. <i>Nanocomposites</i> , 2021 , 7, 109-122	3.4	Ο
845	Enhancing the reinforcing efficiency in CNT nanocomposites the development of pyrene-based active dispersants <i>RSC Advances</i> , 2021 , 11, 23892-23900	3.7	
844	A novel deposition mechanism of Au on Ag nanostructures involving galvanic replacement and reduction reactions. <i>Chemical Communications</i> , 2021 , 57, 8332-8335	5.8	3

843	Nanostructured metal nitrides for photocatalysts. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5323-5342	7.1	3
842	Berlin Green Framework-Based Gas Sensor for Room-Temperature and High-Selectivity Detection of Ammonia. <i>Nano-Micro Letters</i> , 2021 , 13, 63	19.5	6
841	Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6333-6391	7.8	7
840	MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 5195-5220	7.3	7
839	Hetero-MXenes: Theory, Synthesis, and Emerging Applications. <i>Advanced Materials</i> , 2021 , 33, e2004129	24	58
838	PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy via ferroptosis and ATM deficiency-triggered chemosensitization. <i>Materials Horizons</i> , 2021 , 8, 2216-2229	14.4	О
837	Recent Progress of Fluxgate Magnetic Sensors: Basic Research and Application. Sensors, 2021, 21,	3.8	8
836	MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. <i>Small</i> , 2021 , 17, e20060:	5 4 1	41
835	Tailored negative/positive photoresponse of BP via doping. <i>Nanotechnology</i> , 2021 , 32, 185201	3.4	
834	Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. <i>Advanced Materials</i> , 2021 , 33, e2004446	24	24
833	PbSe Nanocrystals Produced by Facile Liquid Phase Exfoliation for Efficient UV V is Photodetectors. <i>Advanced Functional Materials</i> , 2021 , 31, 2010401	15.6	17
832	Enhanced magnetic Lorentz force second harmonic generation originating from a double-resonances plasmonic metasurface. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 175110	3	2
831	Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. <i>Reports on Progress in Physics</i> , 2021 , 84, 026401	14.4	11
830	Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. <i>Small</i> , 2021 , 17, e2005640	11	4
829	Gold Nanocluster-Modified Titanium Nitride for Ultrafast Photonics Applications. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000954	6.4	O
828	Multiphoton Photoluminescence in Hybrid Plasmon Biber Cavities with Au and Nanobipyramids: Two-Photon versus Four-Photon Processes and Rapid Quenching. <i>ACS Photonics</i> , 2021 , 8, 2088-2094	6.3	O
827	Best of Both Worlds: Synergistically Derived Material Properties via Additive Manufacturing of Nanocomposites. <i>Advanced Functional Materials</i> , 2021 , 31, 2103334	15.6	2
826	Nanopoxia: Targeting Cancer Hypoxia by Antimonene-Based Nanoplatform for Precision Cancer Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2104607	15.6	7

825	Wavelength tunable passive-mode locked Er-doped fiber laser based on graphene oxide nano-platelet. <i>Optics and Laser Technology</i> , 2021 , 140, 106932	4.2	4
824	Water-Dispersible CsPbBr Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO Reduction. <i>Nano-Micro Letters</i> , 2021 , 13, 172	19.5	3
823	Recent applications of black phosphorus and its related composites in electrochemistry and bioelectrochemistry: A mini review. <i>Electrochemistry Communications</i> , 2021 , 129, 107095	5.1	2
822	Construction of super-hydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications. <i>Chemical Engineering Journal</i> , 2021 , 417, 129265	14.7	16
821	Novel emerging graphdiyne based two dimensional materials: Synthesis, properties and renewable energy applications. <i>Nano Today</i> , 2021 , 39, 101207	17.9	11
820	Electroactive electrospun nanofibers for tissue engineering. <i>Nano Today</i> , 2021 , 39, 101196	17.9	44
819	Discrete light bullets in coupled optical resonators. <i>Optics Letters</i> , 2021 , 46, 4072-4075	3	3
818	Performance analysis of photo-electrochemical photodetector based on liquid-phase exfoliation few-layered graphdiyne nanosheets. <i>Nanophotonics</i> , 2021 , 10, 2833-2845	6.3	2
817	The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 148, 111369	16.2	3
816	Sub-10 nm two-dimensional transistors: Theory and experiment. <i>Physics Reports</i> , 2021 , 938, 1-1	27.7	14
815	pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy. <i>Photodiagnosis and Photodynamic Therapy</i> , 2021 , 35, 102429	3.5	2
814	Recent progress in acoustic materials and noise control strategies 🖪 review. <i>Applied Materials Today</i> , 2021 , 24, 101141	6.6	4
813	Recent progress of separators in lithium-sulfur batteries. <i>Energy Storage Materials</i> , 2021 , 40, 439-460	19.4	30
812	Mid-infrared 2.8 µm band laser output and pulse modulation. <i>Optik</i> , 2021 , 242, 166916	2.5	Ο
811	Designing of 0D/2D mixed-dimensional van der waals heterojunction over ultrathin g-C3N4 for high-performance flexible self-powered photodetector. <i>Chemical Engineering Journal</i> , 2021 , 420, 12955	56 ^{14.7}	9
810	Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. <i>Progress in Solid State Chemistry</i> , 2021 , 63, 100326	8	6
809	Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. <i>Chemical Reviews</i> , 2021 , 121, 13342-13453	3 68.1	42
808	Spectral filtering effect on the ultrafast mid-infrared Er-doped ZBLAN fiber laser. <i>Optics Letters</i> , 2021 , 46, 4773-4776	3	2

(2021-2021)

807	In-situ deposition of diamond on functionally graded copper scaffold for improved thermal conductivity and mechanical properties. <i>Materials Letters</i> , 2021 , 299, 130050	3.3	O
806	Microcellular epoxy/graphene nanocomposites with outstanding electromagnetic interference shielding and mechanical performance by overcoming nanofiller loading/dispersion dichotomy. <i>Composites Science and Technology</i> , 2021 , 215, 109000	8.6	8
805	TiO supported single Ag atoms nanozyme for elimination of SARS-CoV2. <i>Nano Today</i> , 2021 , 40, 101243	17.9	14
804	Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. <i>Nano Today</i> , 2021 , 40, 101286	17.9	6
803	Broadband few-layer niobium carbide MXene as saturable absorber for solid-state lasers. <i>Optics and Laser Technology</i> , 2021 , 142, 107199	4.2	8
802	Synthesis of Ti3C2Fx MXene with controllable fluorination by electrochemical etching for lithium-ion batteries applications. <i>Ceramics International</i> , 2021 , 47, 28642-28649	5.1	8
801	Tin selenide: A promising black-phosphorus-analogue nonlinear optical material and its application as all-optical switcher and all-optical logic gate. <i>Materials Today Physics</i> , 2021 , 21, 100500	8	1
800	MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector. <i>Materials Today Physics</i> , 2021 , 21, 100479	8	4
799	2D materials for bone therapy. Advanced Drug Delivery Reviews, 2021 , 178, 113970	18.5	3
798	From phosphorus to phosphorene: Applications in disease theranostics. <i>Coordination Chemistry Reviews</i> , 2021 , 446, 214110	23.2	19
797	Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. <i>Coordination Chemistry Reviews</i> , 2021 , 449, 214209	23.2	7
796	Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. <i>Biomaterials Science</i> , 2021 , 9, 5437-5471	7.4	15
795	Generation of polarization and phase singular beams in fibers and fiber lasers. <i>Advanced Photonics</i> , 2021 , 3,	8.1	36
794	Applications of Few-Layer NbC MXene: Narrow-Band Photodetectors and Femtosecond Mode-Locked Fiber Lasers. <i>ACS Nano</i> , 2021 , 15, 954-965	16.7	65
793	Detection of cell-surface sialic acids and photodynamic eradication of cancer cells using dye-modified polydopamine-coated gold nanobipyramids. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 578	8 0 ∹3784	4 ^O
792	Black phosphorus: device and application 2021 , 139-163		Ο
791	Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5893-5898	7.1	3
790	Synthesis and defect engineering of molybdenum oxides and their SERS applications. <i>Nanoscale</i> , 2021 , 13, 5620-5651	7.7	12

789	A nanomesh electrode for self-driven perovskite photodetectors with tunable asymmetric Schottky junctions. <i>Nanoscale</i> , 2021 , 13, 17147-17155	7.7	1
788	Self-powered ultrasensitive and highly stretchable temperature-strain sensing composite yarns. <i>Materials Horizons</i> , 2021 , 8, 2513-2519	14.4	6
787	Tailoring the ultrafast and nonlinear photonics of MXenes through elemental replacement. <i>Nanoscale</i> , 2021 , 13, 15891-15898	7.7	3
786	Advances in Solar-Driven Hygroscopic Water Harvesting. <i>Global Challenges</i> , 2021 , 5, 2000085	4.3	7
785	Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. <i>Nanotechnology</i> , 2020 , 31, 162001	3.4	26
7 ⁸ 4	Prodrug-Loaded Zirconium Carbide Nanosheets as a Novel Biophotonic Nanoplatform for Effective Treatment of Cancer. <i>Advanced Science</i> , 2020 , 7, 2001191	13.6	17
783	Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics. <i>Nano-Micro Letters</i> , 2020 , 12, 106	19.5	37
782	Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production. <i>Nanotechnology</i> , 2020 , 31, 365701	3.4	5
781	2D materials beyond graphene toward Si integrated infrared optoelectronic devices. <i>Nanoscale</i> , 2020 , 12, 11784-11807	7.7	34
78o	Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. <i>Nano Research</i> , 2020 , 13, 1485-1508	10	24
779	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. <i>Nanoscale</i> , 2020 , 12, 11364-11394	7.7	19
778	Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7272-7299	7.1	15
777	Ultrafast Relaxation Dynamics and Nonlinear Response of Few-Layer Niobium Carbide MXene. <i>Small Methods</i> , 2020 , 4, 2000250	12.8	47
776	Control of dissipative rogue waves in nonlinear cavity optics: Optical injection and time-delayed feedback. <i>Chaos</i> , 2020 , 30, 053103	3.3	5
775	Bismuthene quantum dots based optical modulator for MIR lasers at 2 Th. <i>Optical Materials</i> , 2020 , 102, 109830	3.3	8
774	High-Performance Transparent Laminates Based on Highly Oriented Polyethylene Films. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 2458-2468	4.3	3
773	Nin nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 19335-19343	6.7	16
772	Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High-Efficiency Perovskite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e2000999	24	71

771	Synthesis Techniques, Optoelectronic Properties, and Broadband Photodetection of Thin-Film Black Phosphorus. <i>Advanced Optical Materials</i> , 2020 , 8, 2000045	8.1	18
770	Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. <i>Chemical Communications</i> , 2020 , 56, 7041-7044	5.8	14
769	Designing CuO/ZnO nanoforest device toward optimal photocatalytic performance through structure and facet engineering. <i>Materials Letters</i> , 2020 , 273, 127907	3.3	6
768	Engineering Mono-Chalcogen Nanomaterials for Omnipotent Anticancer Applications: Progress and Challenges. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000273	10.1	5
767	Gold nanonails for surface-enhanced infrared absorption. <i>Nanoscale Horizons</i> , 2020 , 5, 1200-1212	10.8	12
766	Manipulating Charge and Energy Transfer between 2D Atomic Layers via Heterostructure Engineering. <i>Nano Letters</i> , 2020 , 20, 5359-5366	11.5	23
765	Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose. <i>ACS Applied Materials & Englishing States</i> , 2020 , 12, 31628-31636	9.5	28
764	Emerging combination strategies with phototherapy in cancer nanomedicine. <i>Chemical Society Reviews</i> , 2020 , 49, 8065-8087	58.5	193
763	Pristine MOF and COF materials for advanced batteries. <i>Energy Storage Materials</i> , 2020 , 31, 115-134	19.4	65
762	Emerging 2D pnictogens for catalytic applications: status and challenges. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12887-12927	13	17
761	In Vivo Enrichment and Elimination of Circulating Tumor Cells by Using a Black Phosphorus and Antibody Functionalized Intravenous Catheter. <i>Advanced Science</i> , 2020 , 7, 2000940	13.6	12
760	Semiconducting quantum dots: Modification and applications in biomedical science. <i>Science China Materials</i> , 2020 , 63, 1631-1650	7.1	12
759	Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. <i>Progress in Solid State Chemistry</i> , 2020 , 59, 100283	8	35
758	Graphdiyne as a Promising Mid-Infrared Nonlinear Optical Material for Ultrafast Photonics. <i>Advanced Optical Materials</i> , 2020 , 8, 2000067	8.1	38
757	Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. <i>Acta Biomaterialia</i> , 2020 , 107, 260-2	271 ^{0.8}	23
756	MXene Photonic Devices for Near-Infrared to Mid-Infrared Ultrashort Pulse Generation. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3513-3522	5.6	19
755	Anisotropic Plasmonic Nanostructure Induced Polarization Photoresponse for MoS2-Based Photodetector. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1902179	4.6	22
754	Review of graphene modulators from the low to the high figure of merits. <i>Journal Physics D:</i> Applied Physics, 2020 , 53, 233002	3	12

753	Theoretical investigation of magneto-electro-elastic metamaterials. <i>Solid State Communications</i> , 2020 , 310, 113850	1.6	O
752	Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4990-5013	7.3	34
751	Sb4O5Cl2 for 34th-order-harmonic mode locking. <i>Optical Materials</i> , 2020 , 100, 109635	3.3	2
75°	Review of 2D group VA material-based heterostructures. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 293002	3	18
749	Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. <i>Nano Research</i> , 2020 , 13, 891-918	10	27
748	Fano Resonance in Artificial Photonic Molecules. <i>Advanced Optical Materials</i> , 2020 , 8, 1902153	8.1	14
747	Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 4988-5014	7.1	11
746	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. <i>Nano Letters</i> , 2020 , 20, 3943-3955	11.5	97
745	All-Optical Modulator Using MXene Inkjet-Printed Microring Resonator. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2020 , 26, 1-6	3.8	13
744	Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. <i>Nature Communications</i> , 2020 , 11, 1330	17.4	56
743	Facile liquid-phase exfoliated few-layer GeP nanosheets and their optoelectronic device applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5547-5553	7.1	10
742	High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method. <i>Nanophotonics</i> , 2020 , 9, 1981-1991	6.3	11
741	Quantum confinement-induced enhanced nonlinearity and carrier lifetime modulation in two-dimensional tin sulfide. <i>Nanophotonics</i> , 2020 , 9, 1963-1972	6.3	8
740	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. <i>Matter</i> , 2020 , 2, 297-322	12.7	104
739	Graphdiyne-Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900367	8.3	56
738	Site-Selective Bi2Te3 E eTe2 Heterostructure as a Broadband Saturable Absorber for Ultrafast Photonics. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900409	8.3	21
737	Giant energy storage density in PVDF with internal stress engineered polar nanostructures. <i>Nano Energy</i> , 2020 , 72, 104662	17.1	32
736	Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14356-14383	13	19

735	Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. <i>Light: Science and Applications</i> , 2020 , 9, 114	.7	51
734	Investigation on the Polarization Dependence of An Angled Polished Multimode Fibre Structure. <i>Journal of Lightwave Technology</i> , 2020 , 38, 4520-4525 4		5
733	Inorganic nano-carriers based smart drug delivery systems for tumor therapy. <i>Smart Materials in Medicine</i> , 2020 , 1, 32-47	.9	81
732	Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12768-12794	[25
731	Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles. <i>ACS Applied Materials & ACS Applied</i> 9.5	5	21
730	A nano-lateral heterojunction of selenium-coated tellurium for infrared-band soliton fiber lasers. Nanoscale, 2020 , 12, 15252-15260	7	5
729	Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2002885	.6	29
728	Sustainable and self-regulating out-of-oven manufacturing of FRPs with integrated multifunctional capabilities. <i>Composites Science and Technology</i> , 2020 , 190, 108032	5	9
727	Transport and Thermoelectric Properties of SnX (X = S or Se) Bilayers and Heterostructures. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6946-6955	Ĺ	6
726	Deep-Learning-Enabled MXene-Based Artificial Throat: Toward Sound Detection and Speech Recognition. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000262	3	16
725	Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4647-4676		26
724	Passively Q-switched Tm:YAlO3 laser based on WS2/MoS2 two-dimensional nanosheets at 2 Th. Optics and Laser Technology, 2020 , 126, 106084	<u>)</u>	13
723	Phosphorene-assisted silicon photonic modulator with fast response time. <i>Nanophotonics</i> , 2020 , 9, 1973	979	10
722	Gold nanobipyramid-embedded ultrathin metal nanoframes for monitoring catalytic reactions. <i>Science</i> , 2020 , 11, 3198-3207	1	18
721	Few-layer hexagonal bismuth telluride (Bi2Te3) nanoplates with high-performance UV-Vis photodetection. <i>Nanoscale Advances</i> , 2020 , 2, 1333-1339	Ĺ	20
720	PumpBrobe micro-spectroscopy and 2D materials. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 473001 3		6
719	In Situ Surface Protection for Enhancing Stability and Performance of LiNi0.5Mn0.3Co0.2O2 at 4.8 V: The Working Mechanisms 2020 , 2, 280-290		32
718	Stability of Perovskite Light Sources: Status and Challenges. <i>Advanced Optical Materials</i> , 2020 , 8, 190201&1	[26

717	1D@0D hybrid dimensional heterojunction-based photonics logical gate and isolator. <i>Applied Materials Today</i> , 2020 , 19, 100589	6.6	12
716	Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the Electron-Dominating Interface. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1835-1839	6.4	14
715	Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures. <i>Nanoscale Horizons</i> , 2020 , 5, 847-856	10.8	17
714	A self-powered photodetector based on two-dimensional boron nanosheets. <i>Nanoscale</i> , 2020 , 12, 5313	- 53 23	36
713	Environmentally stable black phosphorus saturable absorber for ultrafast laser. <i>Nanophotonics</i> , 2020 , 9, 2445-2449	6.3	10
712	Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. <i>Nanophotonics</i> , 2020 , 9, 2603-2639	6.3	16
711	Research progress on the preparations, characterizations and applications of large scale 2D transition metal dichalcogenides films. <i>FlatChem</i> , 2020 , 21, 100161	5.1	21
710	Evolutional carrier mobility and power factor of two-dimensional tin telluride due to quantum size effects. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 4181-4191	7.1	6
709	Bismuth nanosheets Q-switched Nd:BGO laser operating at 1065 nm with 880 nm laser-diode pumping. <i>Optics and Laser Technology</i> , 2020 , 127, 106152	4.2	2
708	Recent advances in doping engineering of black phosphorus. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5421-5441	13	38
707	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. <i>Chemistry of Materials</i> , 2020 , 32, 1703-1747	9.6	197
706	Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. <i>Coordination Chemistry Reviews</i> , 2020 , 410, 213218	23.2	36
705	Refractive Index Sensors Based on Ti3C2Tx MXene Fibers. ACS Applied Nano Materials, 2020, 3, 303-311	5.6	36
704	Emerging black phosphorus analogue nanomaterials for high-performance device applications. Journal of Materials Chemistry C, 2020 , 8, 1172-1197	7.1	28
703	Recent Progress of Two-Dimensional Thermoelectric Materials. <i>Nano-Micro Letters</i> , 2020 , 12, 36	19.5	98
702	High Efficiency Mesoscopic Solar Cells Using CsPbI Perovskite Quantum Dots Enabled by Chemical Interface Engineering. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3775-3783	16.4	92
701	The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. <i>Advanced Science</i> , 2020 , 7, 1902236	13.6	100
700	High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 960-967	6.4	53

699	Advances in nanomaterials for photodynamic therapy applications: Status and challenges. <i>Biomaterials</i> , 2020 , 237, 119827	15.6	262
698	Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. <i>Nanoscale</i> , 2020 , 12, 4586-4590	7.7	18
697	All-Optical Control of Microfiber Knot Resonator Based on 2D Ti2CTx MXene. <i>Advanced Optical Materials</i> , 2020 , 8, 1900977	8.1	20
696	Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. <i>Physics Reports</i> , 2020 , 848, 1-58	27.7	321
695	Cu12Sb4S13 nanocrystals as absorbers for a diode-pumped Tm,La:CaF2 2 fb Q-switched laser. <i>Optics Communications</i> , 2020 , 462, 125281	2	0
694	Generation and pulsating behaviors of loosely bound solitons in a passively mode-locked fiber laser. <i>Physical Review A</i> , 2020 , 101,	2.6	8
693	Highly Efficient Super-Continuum Generation on an Epsilon-Near-Zero Surface. ACS Omega, 2020, 5, 24	58.346	549
692	Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges. <i>Nanoscale Horizons</i> , 2020 , 5, 787-8	30 ¹ 70.8	25
691	Ultrathin boron nanosheets as an emerging two-dimensional photoluminescence material for bioimaging. <i>Nanoscale Horizons</i> , 2020 , 5, 705-713	10.8	20
690	High-modulus rotary jet spun co-polyimide nanofibers and their composites. <i>Nanocomposites</i> , 2020 , 6, 1-11	3.4	6
689	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001334	15.6	66
688	2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. <i>Advanced Science</i> , 2020 , 7, 2000058	13.6	84
687	Direction-limited water transport and inhibited heat convection loss of gradient-structured hydrogels for highly efficient interfacial evaporation. <i>Solar Energy</i> , 2020 , 201, 581-588	6.8	13
686	Artificial visual memory device based on a photo-memorizing composite and one-step manufacturing. <i>Materials Horizons</i> , 2020 , 7, 1597-1604	14.4	2
685	Multifunctional VIIVI binary heterostructure-based self-powered pH-sensitive photo-detector. Journal of Materials Chemistry C, 2020 , 8, 5991-6000	7.1	5
684	Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. <i>Science Advances</i> , 2020 , 6, eaay6825	14.3	62
683	Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection. <i>Nanoscale</i> , 2020 , 12, 11232-11241	7.7	9
682	Graphdiyne-Based Flexible Photodetectors with High Responsivity and Detectivity. <i>Advanced Materials</i> , 2020 , 32, e2001082	24	80

681	Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers. <i>Progress in Quantum Electronics</i> , 2020 , 71, 100264	9.1	27
680	Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8813-8830	13	70
679	Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. <i>Advanced Photonics</i> , 2020 , 2, 1	8.1	30
6 7 8	Nanoporous Cobalt-Selenide as High-Performance Bifunctional Electrocatalyst towards Oxygen Evolution and Hydrazine Oxidation. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 134501	3.9	12
677	Sub-hundred nanosecond pulse generation from a black phosphorus Q-switched Er-doped fiber laser. <i>Optics Express</i> , 2020 , 28, 4708-4716	3.3	10
676	Broad bandwidth dual-wavelength fiber laser simultaneously delivering stretched pulse and dissipative soliton. <i>Optics Express</i> , 2020 , 28, 6937-6944	3.3	9
675	Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA. <i>Optics Express</i> , 2020 , 28, 34104-34110	3.3	6
674	Nonlinear optical absorption features in few-layered hybrid TiC(OH)/TiCF MXene for optical pulse generation in the NIR region. <i>Optics Express</i> , 2020 , 28, 31499-31509	3.3	8
673	Long-term stable platinum diselenide for nanosecond pulse generation in a 3-µm mid-infrared fiber laser. <i>Optics Express</i> , 2020 , 28, 33758-33766	3.3	8
672	Simultaneous generation and real-time observation of loosely bound solitons and noise-like pulses in a dispersion-managed fiber laser with net-normal dispersion. <i>Optics Express</i> , 2020 , 28, 39463-39474	3.3	6
671	MXene-Ti3C2Tx for watt-level high-efficiency pulse generation in a 28 In mid-infrared fiber laser. <i>Photonics Research</i> , 2020 , 8, 972	6	17
670	MXene-based high-performance all-optical modulators for actively Q-switched pulse generation. <i>Photonics Research</i> , 2020 , 8, 1140	6	11
669	All-optical PtSe2 silicon photonic modulator with ultra-high stability. <i>Photonics Research</i> , 2020 , 8, 1189	6	5
668	Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. <i>Photonics Research</i> , 2020 , 8, 78	6	173
667	Facile sonochemical-assisted synthesis of orthorhombic phase black phosphorus/rGO hybrids for effective photothermal therapy. <i>Nanophotonics</i> , 2020 , 9, 3023-3034	6.3	4
666	MXene saturable absorber enabled hybrid mode-locking technology: a new routine of advancing femtosecond fiber lasers performance. <i>Nanophotonics</i> , 2020 , 9, 2451-2458	6.3	27
665	Advances in photonics of recently developed Xenes. <i>Nanophotonics</i> , 2020 , 9, 1621-1649	6.3	6
664	MXene: two dimensional inorganic compounds, for generation of bound state soliton pulses in nonlinear optical system. <i>Nanophotonics</i> , 2020 , 9, 2505-2513	6.3	26

663	Recent investigations on nonlinear absorption properties of carbon nanotubes. <i>Nanophotonics</i> , 2020 , 9, 761-781	6.3	19
662	Highly stable MXene (V2CTx)-based harmonic pulse generation. <i>Nanophotonics</i> , 2020 , 9, 2577-2585	6.3	24
661	2D GeP-based photonic device for near-infrared and mid-infrared ultrafast photonics. <i>Nanophotonics</i> , 2020 , 9, 3645-3654	6.3	4
660	2D Xenes: from fundamentals to applications. <i>Nanophotonics</i> , 2020 , 9, 1555-1556	6.3	1
659	Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184205	0.6	О
658	Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2020 , 69, 188101	0.6	3
657	Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics. <i>Photonics Research</i> , 2020 , 8, 1687	6	1
656	Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. <i>Research</i> , 2020 , 2020, 2624617	7.8	42
655	High repetition rate passively Q-switched laser on Nd:SRA at 1049 nm with MXene Ti3C2Tx. <i>Chinese Optics Letters</i> , 2020 , 18, 041401	2.2	4
654	Recent progress in multi-wavelength fiber lasers: principles, status, and challenges. <i>Chinese Optics Letters</i> , 2020 , 18, 041405	2.2	8
653	Novel Optical and Photonic Devices based on 2D Materials: feature issue introduction. <i>Optical Materials Express</i> , 2020 , 10, 1344	2.6	
652	Tellurium@Selenium core-shell hetero-junction: Facile synthesis, nonlinear optics, and ultrafast photonics applications towards mid-infrared regime. <i>Applied Materials Today</i> , 2020 , 20, 100657	6.6	5
651	The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. <i>Coordination Chemistry Reviews</i> , 2020 , 418, 213333	23.2	11
650	Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface. <i>Materials Today Energy</i> , 2020 , 16, 100401	7	9
649	Graphdiyne Nanosheets for Multicolor Random Lasers. ACS Applied Nano Materials, 2020, 3, 4990-4996	5.6	11
648	Current status and prospects of memristors based on novel 2D materials. <i>Materials Horizons</i> , 2020 , 7, 1495-1518	14.4	59
647	2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. <i>Materials Horizons</i> , 2020 , 7, 2903-2921	14.4	18
646	Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. <i>Reports on Progress in Physics</i> , 2020 , 83, 116401	14.4	6

645	Ultraeffective Cancer Therapy with an Antimonene-Based X-Ray Radiosensitizer. <i>Advanced Functional Materials</i> , 2020 , 30, 1906010	15.6	41
644	2D Materials for laser applications 2020 , 79-103		
643	Self-Powered Photodetectors Based on 2D Materials. <i>Advanced Optical Materials</i> , 2020 , 8, 1900765	8.1	105
642	Inorganic 2D Luminescent Materials: Structure, Luminescence Modulation, and Applications. <i>Advanced Optical Materials</i> , 2020 , 8, 1900978	8.1	29
641	Highly Efficient Silicon Photonic Microheater Based on Black Arsenic Phosphorus. <i>Advanced Optical Materials</i> , 2020 , 8, 1901526	8.1	12
640	A self-encapsulated broadband phototransistor based on a hybrid of graphene and black phosphorus nanosheets. <i>Nanoscale Advances</i> , 2020 , 2, 1059-1065	5.1	12
639	In-plane anisotropic electronics based on low-symmetry 2D materials: progress and prospects. <i>Nanoscale Advances</i> , 2020 , 2, 109-139	5.1	46
638	Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. <i>Nanoscale</i> , 2020 , 12, 2309-2327	7.7	32
637	Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. <i>Nanoscale</i> , 2020 , 12, 3535-3559	7.7	155
636	An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 323-333	13	46
635	Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. <i>Nanoscale</i> , 2020 , 12, 2201-2227	7.7	44
634	An overview of the optical properties and applications of black phosphorus. <i>Nanoscale</i> , 2020 , 12, 3513-	3 <i>53</i> 4	39
633	Degradation of quantum dot light emitting diodes, the case under a low driving level. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2014-2018	7.1	17
632	A few-layer InSe-based sensitivity-enhanced photothermal fiber sensor. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 132-138	7.1	7
631	Recent Progress in 2D Material-Based Saturable Absorbers for All Solid-State Pulsed Bulk Lasers. Laser and Photonics Reviews, 2020 , 14, 1900240	8.3	47
630	Solar-Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. <i>Solar Rrl</i> , 2020 , 4, 1900400	7.1	81
629	The visible nonlinear optical properties and passively Q-switched laser application of a layered PtSe material. <i>Nanoscale</i> , 2020 , 12, 1061-1066	7.7	24
628	Recent developments in emerging two-dimensional materials and their applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 387-440	7.1	227

627	Impedance Modeling and Stability Analysis in Vehicle-Grid System with CHB-STATCOM. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 3026-3039	7	7
626	Passive mode-locking operation of a diode-pumped Tm:YAG laser with a MoS2 saturable absorber. <i>Optics and Laser Technology</i> , 2020 , 124, 105986	4.2	7
625	Mid-Infrared Photonics Using 2D Materials: Status and Challenges. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900098	8.3	68
624	One-step electrodeposited 3D porous NiCoSe nanosheet array for high-performance asymmetric supercapacitors. <i>Nanotechnology</i> , 2020 , 31, 125403	3.4	6
623	Passively Q-switched laser using PtSe2 as saturable absorber at 1.3 Th. <i>Infrared Physics and Technology</i> , 2020 , 104, 103155	2.7	4
622	Surface Nonlinear Optics on Centrosymmetric Dirac Nodal-Line Semimetal ZrSiS. <i>Advanced Materials</i> , 2020 , 32, e1904498	24	5
621	Harmonic Mode-Locked Er-Doped Fiber Laser by Evanescent Field-Based MXene Ti3C2Tx (T´=´F, O, or OH) Saturable Absorber. <i>Annalen Der Physik</i> , 2020 , 532, 1900437	2.6	33
620	Recent advances of low-dimensional materials in Mid- and Far-infrared photonics. <i>Applied Materials Today</i> , 2020 , 21, 100800	6.6	9
619	Simple preparation of external-shape and internal-channel size adjustable porous hydrogels by fermentation for efficient solar interfacial evaporation. <i>Solar Energy</i> , 2020 , 208, 778-786	6.8	13
618	Two-Dimensional Black Arsenic Phosphorus for Ultrafast Photonics in Near- and Mid-Infrared Regimes. <i>ACS Applied Materials & Acs Acc Applied Materials & Acs Acc Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	18
617	Zero-Dimensional MXene-Based Optical Devices for Ultrafast and Ultranarrow Photonics Applications. <i>Advanced Science</i> , 2020 , 7, 2002209	13.6	27
616	Sevoflurane prevents vulnerable plaque disruption in apolipoprotein E-knockout mice by increasing collagen deposition and inhibiting inflammation. <i>British Journal of Anaesthesia</i> , 2020 , 125, 1034-1044	5.4	3
615	Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16318-16325	7.1	4
614	Introduction to the Special Issue on Two-Dimensional Materials and Their Biophotonic Applications. Journal of Innovative Optical Health Sciences, 2020 , 13, 2002001	1.2	1
613	Advanced nanomaterials for hypoxia tumor therapy: challenges and solutions. <i>Nanoscale</i> , 2020 , 12, 214	↓9 <i>7.-</i> 21!	51:84
612	Tellurene Nanoflake-Based NO Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 47704-47713	9.5	24
611	Recent development and advances in Photodetectors based on two-dimensional topological insulators. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15526-15574	7.1	14
610	Niobium Carbide MXenes with Broad-Band Nonlinear Optical Response and Ultrafast Carrier Dynamics. <i>ACS Nano</i> , 2020 , 14, 10492-10502	16.7	37

609	Recent Advances in Twisted Structures of Flatland Materials and Crafting Moir Superlattices. <i>Advanced Functional Materials</i> , 2020 , 30, 2000878	15.6	18
608	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. <i>Nano Energy</i> , 2020 , 77, 105080	17.1	60
607	Recent Advance of Tellurium for Biomedical Applications. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 551-559	2.2	7
606	Band structure tuning of EMoO by tin intercalation for ultrafast photonic applications. <i>Nanoscale</i> , 2020 , 12, 23140-23149	7.7	7
605	Rapid prediction of drug inhibition under heat stress: single-photon imaging combined with a convolutional neural network. <i>Nanoscale</i> , 2020 , 12, 23134-23139	7.7	1
604	Infrared response in photocatalytic polymeric carbon nitride for water splitting via an upconversion mechanism. <i>Communications Materials</i> , 2020 , 1,	6	9
603	Advancing Applications of Black Phosphorus and BP-Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. <i>Advanced Science</i> , 2020 , 7, 2001431	13.6	20
602	Photo-thermal actuation of ultra-drawn high-density polyethylene. <i>Polymer</i> , 2020 , 207, 122897	3.9	4
601	Structures, properties and application of 2D monoelemental materials (Xenes) as graphene analogues under defect engineering. <i>Nano Today</i> , 2020 , 35, 100906	17.9	51
600	2D Material Chemistry: Graphdiyne-based Biochemical Sensing. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 622-630	2.2	60
599	Optoelectronic Gas Sensor Based on Few-Layered InSe Nanosheets for NO Detection with Ultrahigh Antihumidity Ability. <i>Analytical Chemistry</i> , 2020 , 92, 11277-11287	7.8	19
598	Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. <i>Applied Materials Today</i> , 2020 , 20, 100765	6.6	25
597	Recent Advances of Spatial Self-Phase Modulation in 2D Materials and Passive Photonic Device Applications. <i>Small</i> , 2020 , 16, e2002252	11	11
596	NiS2 as a broadband saturable absorber for ultrafast pulse lasers. <i>Optics and Laser Technology</i> , 2020 , 132, 106492	4.2	9
595	Recent developments in mid-infrared fiber lasers: Status and challenges. <i>Optics and Laser Technology</i> , 2020 , 132, 106497	4.2	16
594	Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. <i>Coordination Chemistry Reviews</i> , 2020 , 422, 213467	23.2	19
593	A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 2020, 6, eaba	 5 02 93	43
592	Multiscale understanding of electric polarization in poly(vinylidene fluoride)-based ferroelectric polymers. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16436-16442	7.1	16

591	Two-Dimensional Gold Halides: Novel Semiconductors with Giant Spin-Orbit Splitting and Tunable Optoelectronic Properties. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 9759-9765	6.4	2
590	Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 49281-49296	9.5	9
589	Equipment-free photothermal effect promoted self-healing and self-recovery of hydrogels. <i>Soft Matter</i> , 2020 , 16, 9833-9837	3.6	1
588	Revival of Zeolite-Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. <i>Advanced Science</i> , 2020 , 7, 2001335	13.6	18
587	Immunogenic exosome-encapsulated black phosphorus nanoparticles as an effective anticancer photo-nanovaccine. <i>Nanoscale</i> , 2020 , 12, 19939-19952	7.7	17
586	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. <i>Nano-Micro Letters</i> , 2020 , 12, 179	19.5	34
585	Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. <i>Biomaterials</i> , 2020 , 260, 120339	15.6	33
584	Smart Acid-Activatable Self-Assembly of Black Phosphorous as Photosensitizer to Overcome Poor Tumor Retention in Photothermal Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 2003338	15.6	14
583	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. <i>Nano-Micro Letters</i> , 2020 , 12, 167	19.5	35
582	Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. <i>Light: Science and Applications</i> , 2020 , 9, 161	16.7	68
581	Recent Advances in Functional 2D MXene-Based Nanostructures for Next-Generation Devices. <i>Advanced Functional Materials</i> , 2020 , 30, 2005223	15.6	78
580	Emetine-Loaded Black Phosphorus Hydrogel Sensitizes Tumor to Photothermal Therapy through Inhibition of Stress Granule Formation. <i>Advanced Functional Materials</i> , 2020 , 30, 2003891	15.6	15
579	Vacancy-Induced Antibacterial Activity of XS Quantum Dots against Drug-Resistant Bacteria for Treatment of Bacterial Keratitis. <i>Small</i> , 2020 , 16, e2004677	11	9
578	Near-Infrared-Absorbing Conjugated Polymer Nanoparticles Loaded with Doxorubicin for Combinatorial Photothermal-Chemotherapy of Cancer. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4180-41	8 17 3	5
577	Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2003301	15.6	18
576	Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. <i>Science China Materials</i> , 2020 , 63, 2397-2428	7.1	36
575	Functional outcomes of the modified submandibular gland transfer procedure. <i>Laryngoscope</i> , 2020 , 130, 925-929	3.6	2
574	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. <i>Progress in Solid State Chemistry</i> , 2020 , 58, 100254	8	46

573	Black phosphorus as a versatile nanoplatform: From unique properties to biomedical applications. Journal of Innovative Optical Health Sciences, 2020 , 13, 2030008	1.2	8
572	Two-Dimensional Tellurium: Progress, Challenges, and Prospects. <i>Nano-Micro Letters</i> , 2020 , 12, 99	19.5	61
571	Recent insights into the robustness of two-dimensional black phosphorous in optoelectronic applications. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2020 , 43, 100354	16.4	14
570	Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber. <i>Optics and Laser Technology</i> , 2020 , 128, 106219	4.2	11
569	Photoluminescence enhancement of MoS/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. <i>Nanoscale Horizons</i> , 2020 , 5, 971-977	10.8	4
568	Multifunctional composites based on hierarchical microflanostructures: design, manufacturing, properties, and applications 2020 , 183-198		
567	Facile Synthesis of 2D Tin Selenide for Near- and Mid-Infrared Ultrafast Photonics Applications. <i>Advanced Optical Materials</i> , 2020 , 8, 1902183	8.1	13
566	Recent Advances in Emerging 2D Material-Based Gas Sensors: Potential in Disease Diagnosis. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901329	4.6	69
565	Van der Waals Integration of Bismuth Quantum Dots-Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasma-Enhanced Optoelectronic Applications. <i>Small</i> , 2019 , 15, e1903233	11	27
564	Versatile Applications of Metal Single-Atom @ 2D Material Nanoplatforms. <i>Advanced Science</i> , 2019 , 6, 1901787	13.6	80
563	Monolayer Etellurene: a promising p-type thermoelectric material via first-principles calculations. <i>Nanoscale</i> , 2019 , 11, 18116-18123	7.7	20
562	Flexible Li[LiNiCoMn]O/Carbon Nanotubes/Nanofibrillated Celluloses Composite Electrode for High-Performance Lithium-Ion Battery. <i>Frontiers in Chemistry</i> , 2019 , 7, 555	5	9
561	Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. <i>Nature Communications</i> , 2019 , 10, 4062	17.4	29
560	Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	51
559	Electrochemical Analysis for Enhancing Interface Layer of Spinel LiNiMnO Using p-Toluenesulfonyl Isocyanate as Electrolyte Additive. <i>Frontiers in Chemistry</i> , 2019 , 7, 591	5	12
558	Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. <i>Coordination Chemistry Reviews</i> , 2019 , 400, 213041	23.2	54
557	Third-order nonlinear optical responses and carrier dynamics in antimonene. <i>Optical Materials</i> , 2019 , 95, 109209	3.3	17
556	All-fiber optical polarization modulation system using MoS2 as modulator. <i>Infrared Physics and Technology</i> , 2019 , 102, 103002	2.7	6

555	Robust Above-Room-Temperature Ferromagnetism in Few-Layer Antimonene Triggered by Nonmagnetic Adatoms. <i>Advanced Functional Materials</i> , 2019 , 29, 1808746	15.6	30
554	Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. <i>Nanoscale</i> , 2019 , 11, 2577-2593	7.7	187
553	2D group-VA fluorinated antimonene: synthesis and saturable absorption. <i>Nanoscale</i> , 2019 , 11, 1762-17	⁷ 697	39
552	A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 871-878	7.1	52
551	A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e)]4 and its applications as a catalyst. <i>Progress in Solid State Chemistry</i> , 2019 , 54, 1-19	8	39
550	Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. <i>Biosensors and Bioelectronics</i> , 2019 , 130, 315-321	11.8	128
549	Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics. <i>Nanoscale</i> , 2019 , 11, 3046-3101	7.7	46
548	High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots. <i>Advanced Optical Materials</i> , 2019 , 7, 1801602	8.1	93
547	Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. <i>Applied Materials Today</i> , 2019 , 15, 115-138	6.6	50
546	An All-Optical, Actively Q-Switched Fiber Laser by an Antimonene-Based Optical Modulator. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1800313	8.3	91
545	Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. <i>Journal of Controlled Release</i> , 2019 , 296, 150-161	11.7	205
544	2D Black Phosphorus B ased Biomedical Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1808306	15.6	329
543	Au Nanobottles with Synthetically Tunable Overall and Opening Sizes for Chemo-Photothermal Combined Therapy. <i>ACS Applied Materials & District Materials & Materia</i>	9.5	14
542	Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. <i>Nanoscale</i> , 2019 , 11, 2637	7 -/2/ 643	38
541	Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band. <i>Advanced Optical Materials</i> , 2019 , 7, 1801777	8.1	64
540	Recent progress of study on optical solitons in fiber lasers. <i>Applied Physics Reviews</i> , 2019 , 6, 021313	17.3	195
539	Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. <i>APL Photonics</i> , 2019 , 4, 060801	5.2	11
538	Few-Layer Antimonene Nanosheet: A Metal-Free Bifunctional Electrocatalyst for Effective Water Splitting. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4774-4781	6.1	33

537	Electrospun porous Fe2O3 nanotubes as counter electrodes for dye-sensitized solar cells. <i>International Journal of Energy Research</i> , 2019 , 43, 5355-5366	4.5	12
536	Memristive devices based on emerging two-dimensional materials beyond graphene. <i>Nanoscale</i> , 2019 , 11, 12413-12435	7.7	64
535	Lead monoxide: a promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. <i>Nanoscale</i> , 2019 , 11, 12595-12602	7.7	25
534	Spontaneously Regenerative Tough Hydrogels. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10	19 5 6.4()9 <u>5</u> 5
533	Transparent, Lightweight, and High Strength Polyethylene Films by a Scalable Continuous Extrusion and Solid-State Drawing Process. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900138	3.9	8
532	Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 22129-22140	9.5	96
531	Decentralized manufacturing for biomimetics through cooperation of digitization and nanomaterial design. <i>Nanoscale</i> , 2019 , 11, 19179-19189	7.7	1
530	Photodetectors: Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions (Small 23/2019). <i>Small</i> , 2019 , 15, 1970125	11	8
529	Additive manufacturing high performance graphene-based composites: A review. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 124, 105483	8.4	78
528	Review: application of transition metal dichalcogenide in pulsed fiber laser system. <i>Materials Research Express</i> , 2019 , 6, 082004	1.7	15
527	Thermal stress-induced all-optical modulation in MXene-coated polarization maintaining fiber. <i>Laser Physics Letters</i> , 2019 , 16, 065107	1.5	8
526	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. <i>Chemical Society Reviews</i> , 2019 , 48, 2891-2912	58.5	345
525	Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High-Power Zinc Ion Battery. <i>Advanced Functional Materials</i> , 2019 , 29, 1901336	15.6	92
524	Surface Coordination of Black Phosphorus with Modified Cisplatin. <i>Bioconjugate Chemistry</i> , 2019 , 30, 1658-1664	6.3	14
523	Unveiling the Stimulated Robust Carrier Lifetime of Surface-Bound Excitons and Their Photoresponse in InSe. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900171	4.6	14
522	High-Speed and High-Responsivity Hybrid Silicon/Black-Phosphorus Waveguide Photodetectors at 2 μm. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1900032	8.3	48
521	Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 109	937-70	942
520	Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing. <i>Journal of Carbon Research</i> , 2019 , 5, 25	3.3	14

519	Theoretical prediction of tunable electronic and magnetic properties of monolayer antimonene by vacancy and strain. <i>Applied Surface Science</i> , 2019 , 488, 98-106	6.7	12
518	MXene Ti3C2Tx: A Promising Photothermal Conversion Material and Application in All-Optical Modulation and All-Optical Information Loading. <i>Advanced Optical Materials</i> , 2019 , 7, 1900060	8.1	75
517	Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions. <i>Small</i> , 2019 , 15, e1900902	11	57
516	Ferroelectric-Driven Exciton and Trion Modulation in Monolayer Molybdenum and Tungsten Diselenides. <i>ACS Nano</i> , 2019 , 13, 5335-5343	16.7	40
515	PorphyrinBalladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. <i>Nanoscale Horizons</i> , 2019 , 4, 1185-1193	10.8	50
514	Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection. <i>Nanoscale</i> , 2019 , 11, 5839-5860	7.7	21
513	Few-layer MXene Ti3C2Tx (T = F, O, or OH) saturable absorber for visible bulk laser. <i>Optical Materials Express</i> , 2019 , 9, 1795	2.6	45
512	Graphene Heterostructure Integrated Optical Fiber Bragg Grating for Light Motion Tracking and Ultrabroadband Photodetection from 400 nm to 10.768 µm. <i>Advanced Functional Materials</i> , 2019 , 29, 1807274	15.6	22
511	Glass-like transparent high strength polyethylene films by tuning drawing temperature. <i>Polymer</i> , 2019 , 171, 180-191	3.9	19
510	Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. <i>Applied Materials Today</i> , 2019 , 15, 297-304	6.6	67
509	Beta-lead oxide quantum dot (EPbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics. <i>Nanoscale</i> , 2019 , 11, 6828-6837	7.7	20
508	Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Near-Infrared Light with High Sensitivity. <i>Advanced Optical Materials</i> , 2019 , 7, 1900020	8.1	64
507	Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. <i>Nano Today</i> , 2019 , 25, 135-155	17.9	189
506	Tissue-Engineered Trachea Consisting of Electrospun Patterned sc-PLA/GO- g-IL Fibrous Membranes with Antibacterial Property and 3D-Printed Skeletons with Elasticity. <i>Biomacromolecules</i> , 2019 , 20, 1765-1776	6.9	77
505	Two-dimensional tellurium-polymer membrane for ultrafast photonics. <i>Nanoscale</i> , 2019 , 11, 6235-6242	7.7	71
504	Short-Chain Ligand-Passivated Stable EcsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900991	15.6	149
503	All-Optical Active Q-Switching: An All-Optical, Actively Q-Switched Fiber Laser by an Antimonene-Based Optical Modulator (Laser Photonics Rev. 13(4)/2019). <i>Laser and Photonics Reviews</i> , 2019 , 13, 1970020	8.3	3
502	A carob-inspired nanoscale design of yolk-shell Si@void@TiO-CNF composite as anode material for high-performance lithium-ion batteries. <i>Dalton Transactions</i> , 2019 , 48, 6846-6852	4.3	8

501	Magnetic Plasmon-Enhanced Second-Harmonic Generation on Colloidal Gold Nanocups. <i>Nano Letters</i> , 2019 , 19, 2005-2011	11.5	29
500	Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. <i>Advanced Materials</i> , 2019 , 31, e180798	124	136
499	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. <i>Physics Reports</i> , 2019 , 795, 1-51	27.7	262
498	Facile Synthesis of Mayenite Electride Nanoparticles Encapsulated in Graphitic Shells Like Carbon Nano Onions: Non-noble-metal Electrocatalysts for Oxygen Reduction Reaction (ORR). <i>Frontiers in Chemistry</i> , 2019 , 7, 934	5	16
497	Many-Body Complexes in 2D Semiconductors. <i>Advanced Materials</i> , 2019 , 31, e1706945	24	199
496	Chiral Perovskites: Promising Materials toward Next-Generation Optoelectronics. <i>Small</i> , 2019 , 15, e190	2237	79
495	Van der Waals heterostructures for optoelectronics: Progress and prospects. <i>Applied Materials Today</i> , 2019 , 16, 435-455	6.6	62
494	Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods. <i>Nanoscale</i> , 2019 , 11, 15991-16000	7.7	14
493	Fully photon modulated heterostructure for neuromorphic computing. <i>Nano Energy</i> , 2019 , 65, 104000	17.1	45
492	2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1900123	8.3	53
491	2D Crystal-Based Fibers: Status and Challenges. <i>Small</i> , 2019 , 15, e1902691	11	26
490	Engineering Lateral Heterojunction of Selenium-Coated Tellurium Nanomaterials toward Highly Efficient Solar Desalination. <i>Advanced Science</i> , 2019 , 6, 1900531	13.6	25
489	In situ preparation of a CsPbBr/black phosphorus heterostructure with an optimized interface and photodetector application. <i>Nanoscale</i> , 2019 , 11, 16852-16859	7.7	39
488	Mid-infrared Er:CaF2BrF2 bulk laser Q-switched by MXene Ti3C2T x absorber. <i>Applied Physics Express</i> , 2019 , 12, 085506	2.4	22
487	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Next-Generation Device Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1903419	15.6	69
486	NiPS nanoflakes: a nonlinear optical material for ultrafast photonics. <i>Nanoscale</i> , 2019 , 11, 14383-14391	7.7	26
485	Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. <i>Nanoscale</i> , 2019 , 11, 14491-14527	7.7	149
484	Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. <i>Nanotechnology</i> , 2019 , 30, 415202	3.4	19

(2019-2019)

483	Few-Layer Mxene Ti3C2Tx (T=F, O, Or OH) for Robust Pulse Generation in a Compact Er-Doped Fiber Laser. <i>ChemNanoMat</i> , 2019 , 5, 1233-1238	3.5	39
482	Electronic and Optical Properties of Two-Dimensional Tellurene: From First-Principles Calculations. <i>Nanomaterials</i> , 2019 , 9,	5.4	25
481	Plant cell-surface GIPC sphingolipids sense salt to trigger Ca influx. <i>Nature</i> , 2019 , 572, 341-346	50.4	174
480	2D V-V Binary Materials: Status and Challenges. <i>Advanced Materials</i> , 2019 , 31, e1902352	24	236
479	Ultrahigh Ephase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. <i>Nature Communications</i> , 2019 , 10, 4535	17.4	126
478	Flexible and Stretchable Self-Powered Multi-Sensors Based on the N-Type Thermoelectric Response of Polyurethane/Nax(Ni-ett)n Composites. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900582	6.4	17
477	A Robust 2D Photo-Electrochemical Detector Based on NiPS3 Flakes. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900726	6.4	22
476	Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. <i>Applied Physics Reviews</i> , 2019 , 6, 041304	17.3	82
475	Antimonene Engineered Highly Deformable Freestanding Electrode with Extraordinarily Improved Energy Storage Performance. <i>Advanced Energy Materials</i> , 2019 , 9, 1902462	21.8	27
474	Epitaxial Growth of Topological Insulators on Semiconductors (Bi2Se3/Te@Se) toward High-Performance Photodetectors. <i>Small Methods</i> , 2019 , 3, 1900349	12.8	26
473	Antiangiogenesis-Combined Photothermal Therapy in the Second Near-Infrared Window at Laser Powers Below the Skin Tolerance Threshold. <i>Nano-Micro Letters</i> , 2019 , 11, 93	19.5	9
472	Halogenated Antimonene: One-Step Synthesis, Structural Simulation, Tunable Electronic and Photoresponse Property. <i>Advanced Functional Materials</i> , 2019 , 29, 1905857	15.6	21
471	Self-Healable Black Phosphorus Photodetectors. <i>Advanced Functional Materials</i> , 2019 , 29, 1906610	15.6	31
470	Mode-locked mid-IR fibre laser based on 2D nanomaterials 2019 ,		2
469	Bismuth quantum dots as an optical saturable absorber for a 1.3 In Q-switched solid-state laser. <i>Applied Optics</i> , 2019 , 58, 1621-1625	1.7	14
468	Continuous-wave and Q-switched Nd:BGSO lasers based on bismuth nanosheets absorber. <i>Applied Optics</i> , 2019 , 58, 6545-6548	1.7	4
467	104fs mode-locked fiber laser with a MXene-based saturable absorber 2019 ,		1
466	Thulium-doped mode-locked fiber laser with MXene saturable absorber 2019 ,		6

465	Spontaneous emission interference in topological insulator multilayers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 1890	1.7	4
464	MXene-based saturable absorber for femtosecond mode-locked fiber lasers. <i>Optics Express</i> , 2019 , 27, 10159-10170	3.3	71
463	All-optical signal processing in few-layer bismuthene coated microfiber: towards applications in optical fiber systems. <i>Optics Express</i> , 2019 , 27, 16798-16811	3.3	15
462	Au nanocages saturable absorber for 3-µm mid-infrared pulsed fiber laser with a wide wavelength tuning range. <i>Optics Express</i> , 2019 , 27, 30350-30359	3.3	10
461	High-efficiency Huygens' metasurface for terahertz wave manipulation. <i>Optics Letters</i> , 2019 , 44, 3482-	3485	21
460	Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. <i>Photonics Research</i> , 2019 , 7, 494	6	112
459	Ultrafast pulse lasers based on two-dimensinal nanomaterials. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2019 , 68, 188101	0.6	9
458	Theoretical simulations of the soliton self-frequency shift of mid-infrared femtosecond pulses in step-index tellurite optical fibers: broadband tunability and high efficiency. <i>OSA Continuum</i> , 2019 , 2, 1851	1.4	2
457	Single frequency fiber laser based on an ultrathin metal o rganic framework. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4662-4666	7.1	24
456	Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers at 2.87 h Based on Carbon Nanotube. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25, 1-6	3.8	11
455	UV-Visible Photodetector Based on I-type Heterostructure of ZnO-QDs/Monolayer MoS. <i>Nanoscale Research Letters</i> , 2019 , 14, 364	5	30
454	2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1800327	8.3	203
453	Watt-level continuous-wave and high-repetition-rate mid-infrared lasers based on a Er3+-doped Ca0.8Sr0.2F2 crystal. <i>Applied Physics Express</i> , 2019 , 12, 115505	2.4	3
452	Recent advances in multiphoton microscopy combined with nanomaterials in the field of disease evolution and clinical applications to liver cancer. <i>Nanoscale</i> , 2019 , 11, 19619-19635	7.7	14
451	Dual-wavelength dissipative solitons in an anomalous-dispersion-cavity fiber laser. <i>Nanophotonics</i> , 2019 , 9, 2361-2366	6.3	5
450	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. <i>Nanoscale</i> , 2019 , 11, 21622-21678	7.7	109
449	Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: opportunities and challenges. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25227-25246	13	30
448	Layer-Dependent Properties of Ultrathin GeS Nanosheets and Application in UV-Vis Photodetectors. <i>ACS Applied Materials & Description (Materials & Description)</i> 11, 47197-47206	9.5	18

447	Accelerating Fuel Cell Development with Additive Manufacturing Technologies: State of the Art, Opportunities and Challenges. <i>Fuel Cells</i> , 2019 , 19, 636-650	2.9	22
446	Passively Q-switched operation of in-band pumped Ho:YLF based on Ti3C2Tx MXene. <i>Infrared Physics and Technology</i> , 2019 , 103, 103076	2.7	13
445	The emerging ferroic orderings in two dimensions. Science China Information Sciences, 2019, 62, 1	3.4	7
444	Recent progress of spintronics based on emerging 2D materials: Cri3 and Xenes. <i>Materials Research Express</i> , 2019 , 6, 122004	1.7	8
443	Novel Two-Dimensional Carbon-Chromium Nitride-Based Composite as an Electrocatalyst for Oxygen Reduction Reaction. <i>Frontiers in Chemistry</i> , 2019 , 7, 738	5	19
442	Broadband Nonlinear Optical Response of InSe Nanosheets for the Pulse Generation From 1 to 2 fh. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 48281-48289	9.5	27
441	Fiber all-optical light control with low-dimensional materials (LDMs): thermo-optic effect and saturable absorption. <i>Nanoscale Advances</i> , 2019 , 1, 4190-4206	5.1	4
440	A fully inkjet-printed transparent humidity sensor based on a TiC/Ag hybrid for touchless sensing of finger motion. <i>Nanoscale</i> , 2019 , 11, 21522-21531	7.7	36
439	Fe-doped mayenite electride composite with 2D reduced Graphene Oxide: As a non-platinum based, highly durable electrocatalyst for Oxygen Reduction Reaction. <i>Scientific Reports</i> , 2019 , 9, 19809	4.9	19
438	2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics. <i>Advanced Optical Materials</i> , 2019 , 7, 1800224	8.1	172
437	A solid-state passively Q-switched Tm,Gd:CaF2laser with a Ti3C2TxMXene absorber near 2μm. <i>Laser Physics Letters</i> , 2019 , 16, 015803	1.5	57
436	Wideband tunable passively Q-switched fiber laser at 28 th using a broadband carbon nanotube saturable absorber. <i>Photonics Research</i> , 2019 , 7, 14	6	23
435	Low-Charge-Carrier-Scattering Three-Dimensional EMnO2/EMnO2 Networks for Ultra-High-Rate Asymmetrical Supercapacitors. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1051-1059	6.1	23
434	Efficient CuInS2/ZnS Quantum Dots Light-Emitting Diodes in Deep Red Region Using PEIE Modified ZnO Electron Transport Layer. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800575	2.5	17
433	Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. <i>Nature Communications</i> , 2019 , 10, 28	17.4	309
432	Pyroresistivity in conductive polymer composites: a perspective on recent advances and new applications. <i>Polymer International</i> , 2019 , 68, 299-305	3.3	15
431	Input Impedance Modeling and Verification of Single-Phase Voltage Source Converters Based on Harmonic Linearization. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 8544-8554	7.2	27
430	BN as a Saturable Absorber for a Passively Mode-Locked 2 µm Solid-State Laser. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800482	2.5	17

429	The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites. <i>Composites Science and Technology</i> , 2019 , 169, 224-231	8.6	45
428	2D Tellurium Based High-Performance All-Optical Nonlinear Photonic Devices. <i>Advanced Functional Materials</i> , 2019 , 29, 1806346	15.6	122
427	MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. <i>Advanced Functional Materials</i> , 2019 , 29, 1807326	15.6	194
426	An Approach to Suppress Low-Frequency Oscillation by Combining Extended State Observer With Model Predictive Control of EMUs Rectifier. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 10282-102	2 3 7	21
425	Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector. <i>Nanotechnology</i> , 2019 , 30, 114002	3.4	100
424	MZI-Based All-Optical Modulator Using MXene Ti3C2Tx (T = F, O, or OH) Deposited Microfiber. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800532	6.8	69
423	Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV-Vis Photodetector. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 4278-4287	9.5	61
422	Two Dimensional 🛮 nSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties. <i>Nanomaterials</i> , 2019 , 9,	5.4	30
421	Bioresponsive nanogated ensemble based on structure-switchable aptamer directed assembly and disassembly of gold nanoparticles from mesoporous silica supports. <i>Chinese Chemical Letters</i> , 2019 , 30, 779-782	8.1	24
420	Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples. <i>Journal of Raman Spectroscopy</i> , 2019 , 50, 26-33	2.3	8
419	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. <i>Advanced Materials</i> , 2019 , 31, e1803883	24	34
418	Two-dimensional pnictogens, their chemistry and applications. <i>FlatChem</i> , 2019 , 13, 8-24	5.1	24
417	Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 189, 11-20	6.4	25
416	Conceptually Novel Black Phosphorus/Cellulose Hydrogels as Promising Photothermal Agents for Effective Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701510	10.1	139
415	Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability (Laser Photonics Rev. 12(1)/2018). <i>Laser and Photonics Reviews</i> , 2018 , 12, 1870012	8.3	16
414	Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH) (Laser Photonics Rev. 12(2)/2018). <i>Laser and Photonics Reviews</i> , 2018 , 12, 1870013	8.3	34
413	Highly Efficient Circularly Polarized Electroluminescence from Aggregation-Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. <i>Advanced Functional Materials</i> , 2018 , 28, 1800051	15.6	209
412	Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping. <i>Advanced Materials</i> , 2018 , 30, e1705792	24	113

(2018-2018)

411	Robust SnO Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8901-8905	16.4	195
410	Hydrogen bonds in heterojunction photocatalysts for efficient charge transfer. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 198-205	21.8	34
409	Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion. <i>Advanced Optical Materials</i> , 2018 , 6, 1701287	8.1	79
408	Nonlayered 2D Materials: Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability (Adv. Funct. Mater. 16/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870107	15.6	3
407	All-Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800016	8.3	118
406	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018 , 5, 1808-18	36.6	96
405	Influence of Shell Thickness on the Performance of NiO-Based All-Inorganic Quantum Dot Light-Emitting Diodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 14894-14900	9.5	23
404	Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. <i>Advanced Functional Materials</i> , 2018 , 28, 1705833	15.6	277
403	Tailored pyroresistive performance and flexibility by introducing a secondary thermoplastic elastomeric phase into graphene nanoplatelet (GNP) filled polymer composites for self-regulating heating devices. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2760-2768	7.1	21
402	Black phosphorus nanosheets for rapid microRNA detection. <i>Nanoscale</i> , 2018 , 10, 5060-5064	7.7	74
401	Reassembly of Zr-Labeled Cancer Cell Membranes into Multicompartment Membrane-Derived Liposomes for PET-Trackable Tumor-Targeted Theranostics. <i>Advanced Materials</i> , 2018 , 30, e1704934	24	63
400	Characterization of Dark Soliton Sidebands in All-Normal-Dispersion Fiber Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-7	3.8	6
399	Mechano-Based Transductive Sensing for Wearable Healthcare. <i>Small</i> , 2018 , 14, e1702933	11	66
398	Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices. <i>Advanced Optical Materials</i> , 2018 , 6, 1701166	8.1	217
397	High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. <i>Advanced Functional Materials</i> , 2018 , 28, 1705237	15.6	206
396	Few-Layer Tin Sulfide: A Promising Black-Phosphorus-Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion. <i>Advanced Optical Materials</i> , 2018 , 6, 1700985	8.1	162
395	Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. <i>Nanoscale</i> , 2018 , 10, 2404-241	7 .7	112
394	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO2 onto Ferroelectric-Encapsulated Cathode: Toward Ultrastable Free-Standing Room Temperature SodiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1705537	15.6	134

393	Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3538-3548	9.5	127
392	THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. Journal of Materials Chemistry C, 2018 , 6, 1291-1306	7.1	81
391	Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 501-506	11.5	518
390	Low-Frequency Stability Analysis of Single-Phase System With \$dq\$-Frame Impedance ApproachPart II: Stability and Frequency Analysis. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 5012-5024	4.3	29
389	Low-Frequency Stability Analysis of Single-Phase System With dq-Frame Impedance Approach Part I: Impedance Modeling and Verification. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 4999-5011	4.3	45
388	Robust SnO2 Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 9039-9043	3.6	36
387	Defect Engineering in Few-Layer Phosphorene. Small, 2018, 14, e1704556	11	23
386	Low turn-on voltage and highly bright AgIh᠒nB quantum dot light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4683-4690	7.1	23
385	Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. <i>Nanotechnology</i> , 2018 , 29, 235201	3.4	71
384	Pulse duration dependent nonlinear optical response in black phosphorus dispersions. <i>Optics Communications</i> , 2018 , 406, 244-248	2	20
383	Dissolvable thermoplastic interleaves for carbon nanotube localization in carbon/epoxy laminates with integrated damage sensing capabilities. <i>Structural Health Monitoring</i> , 2018 , 17, 59-66	4.4	10
382	Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser. <i>Optics Communications</i> , 2018 , 406, 158-162	2	33
381	Three-layer phosphorene-metal interfaces. <i>Nano Research</i> , 2018 , 11, 707-721	10	59
380	Regression analysis of interval-censored failure time data with possibly crossing hazards. <i>Statistics in Medicine</i> , 2018 , 37, 768-775	2.3	4
379	Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). <i>Laser and Photonics Reviews</i> , 2018 , 12, 1700229	8.3	438
378	Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 105, 9-18	8.4	52
377	Biomimetic albumin-modified gold nanorods for photothermo-chemotherapy and macrophage polarization modulation. <i>Acta Pharmaceutica Sinica B</i> , 2018 , 8, 74-84	15.5	51
376	Photonics of 2D materials. <i>Optics Communications</i> , 2018 , 406, 1-2	2	13

375	Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1700221	8.3	265
374	Electrical contacts in monolayer blue phosphorene devices. <i>Nano Research</i> , 2018 , 11, 1834-1849	10	42
373	Perovskite CsPbX3: A Promising Nonlinear Optical Material and Its Applications for Ambient All-Optical Switching with Enhanced Stability. <i>Advanced Optical Materials</i> , 2018 , 6, 1800400	8.1	67
372	MXene Ti3C2T x absorber for a 1.06 th passively Q-switched ceramic laser. <i>Laser Physics Letters</i> , 2018 , 15, 085805	1.5	70
371	102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. <i>Optics Express</i> , 2018 , 26, 12506-12513	3.3	70
370	Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. <i>Photonics Research</i> , 2018 , 6, 762	6	54
369	Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9582-9593	7.1	112
368	Ytterbium-doped fiber laser passively mode locked by evanescent field interaction with CH3NH3SnI3 perovskite saturable absorber. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 375106	3	14
367	Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy. <i>Nano Letters</i> , 2018 , 18, 5768-5774	11.5	71
366	Watt-level fibre MOPA in 2.9 µm water vapor window seeded by Q-switched fibre laser. <i>Laser Physics Letters</i> , 2018 , 15, 095106	1.5	0
365	Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics. <i>Advanced Materials</i> , 2018 , 30, e1802061	24	260
364	Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber. <i>Photonics Research</i> , 2018 , 6, 198	6	56
363	Two-Dimensional MXene (TiC)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 276	9.5 531-27 (²¹⁷ 643
362	A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy. <i>Advanced Materials</i> , 2018 , 30, e1803031	24	254
361	Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. <i>Materials Horizons</i> , 2018 , 5, 946-952	14.4	67
360	Spin-dependent k.p Hamiltonian of black phosphorene based on LWdin partitioning method. <i>Journal of Applied Physics</i> , 2018 , 124, 035702	2.5	2
359	Smart cord-rubber composites with integrated sensing capabilities by localised carbon nanotubes using a simple swelling and infusion method. <i>Composites Science and Technology</i> , 2018 , 167, 24-31	8.6	12
358	Monolayer tellurenethetal contacts. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6153-6163	7.1	67

357	Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8977-8983	7.1	18
356	Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. <i>Optics Express</i> , 2018 , 26, 22750-22760	3.3	229
355	Simulations of Quantum Transport in Sub-5-nm Monolayer Phosphorene Transistors. <i>Physical Review Applied</i> , 2018 , 10,	4.3	90
354	Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 1437-1447	3	14
353	Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. <i>Nanomedicine</i> , 2018 , 13, 1753-1772	5.6	23
352	Efficient CuInS2/ZnS based quantum dot light emitting diodes by engineering the exciton formation interface. <i>Journal of Luminescence</i> , 2018 , 202, 339-344	3.8	7
351	Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4747-4755	7.3	116
350	Fluorination-Enhanced Ambient Stability and Electronic Tolerance of Black Phosphorus Quantum Dots. <i>Advanced Science</i> , 2018 , 5, 1800420	13.6	46
349	High-Efficiency "Working-in-Tandem" Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8497-8508	16.4	265
348	Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. <i>Chemical Society Reviews</i> , 2018 , 47, 5588-5601	58.5	274
347	Ultrathin Metal Drganic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. <i>Advanced Optical Materials</i> , 2018 , 6, 1800561	8.1	214
346	Introduction to two-dimensional layered materials for ultrafast lasers. <i>Photonics Research</i> , 2018 , 6, TDL	1 6	7
345	Editorial for special issue on photonics based on two-dimensional noncarbon materials. <i>Chinese Optics Letters</i> , 2018 , 16, 020001	2.2	3
344	Enhanced saturable absorption of MoS2 black phosphorus composite in 2 fh passively Q-switched Tm: YAP laser. <i>Chinese Optics Letters</i> , 2018 , 16, 020018	2.2	13
343	Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. <i>Advanced Functional Materials</i> , 2018 , 28, 1704285	15.6	119
342	Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery. <i>Nano Energy</i> , 2018 , 43, 317-325	17.1	56
341	High-performance sub-10-nm monolayer black phosphorene tunneling transistors. <i>Nano Research</i> , 2018 , 11, 2658-2668	10	35
340	Ultrasmall Bismuth Quantum Dots: Facile Liquid-Phase Exfoliation, Characterization, and Application in High-Performance UVII is Photodetector. <i>ACS Photonics</i> , 2018 , 5, 621-629	6.3	175

339	Dynamic cavity effects in topological insulator Bi2Te3 based passive Q-switched solid state laser. Journal of Physics Communications, 2018 , 2, 125007	1.2	7
338	Two-dimensional beta-lead oxide quantum dots. <i>Nanoscale</i> , 2018 , 10, 20540-20547	7.7	34
337	Intaglio-type random silver networks as the cathodes for efficient full-solution processed flexible quantum-dot light-emitting diodes. <i>Nanoscale</i> , 2018 , 10, 22541-22548	7.7	6
336	Two-Dimensional Lead Monoxide: Facile Liquid Phase Exfoliation, Excellent Photoresponse Performance, and Theoretical Investigation. <i>ACS Photonics</i> , 2018 , 5, 5055-5067	6.3	31
335	Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. Journal of Innovative Optical Health Sciences, 2018 , 11, 1830003	1.2	63
334	TiS2-based saturable absorber for ultrafast fiber lasers. <i>Photonics Research</i> , 2018 , 6, C44	6	46
333	Band Structure Engineering in 2D Materials for Optoelectronic Applications. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800072	6.8	48
332	MXene Ti 3 C 2 T x saturable absorber for pulsed laser at 1.3 h. <i>Chinese Physics B</i> , 2018 , 27, 094214	1.2	29
331	Mantle Cloaks Based on the Frequency Selective Metasurfaces Designed by Bayesian Optimization. <i>Scientific Reports</i> , 2018 , 8, 14033	4.9	12
330	Cancer Theranostics: Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). <i>Advanced Materials</i> , 2018 , 30, 1870283	24	3
329	Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers. <i>Optical Materials Express</i> , 2018 , 8, 3055	2.6	41
328	Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 fb. <i>Nanophotonics</i> , 2018 , 7, 1835-1843	6.3	24
327	MXene-Based Nonlinear Optical Information Converter for All-Optical Modulator and Switcher. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800215	8.3	91
326	Black phosphorus-based field effect transistor devices for Ag ions detection. <i>Chinese Physics B</i> , 2018 , 27, 087308	1.2	36
325	Breaking the Nanoparticle Loading-Dispersion Dichotomy in Polymer Nanocomposites with the Art of Croissant-Making. <i>ACS Nano</i> , 2018 , 12, 9040-9050	16.7	12
324	P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. <i>ACS Applied Materials & Discrete Amplitudes</i> , 2018, 10, 33464-3347	3 ^{9.5}	41
323	Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. <i>Nanoscale</i> , 2018 , 10, 17617-17622	7.7	127
322	Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. <i>Nanoscale</i> , 2018 , 10, 11103-11109	7.7	23

321	Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. <i>Advanced Materials</i> , 2018 , 30, e1706981	24	118
320	Organosilicon modification to enhance the stability of black phosphorus nanosheets under ambient conditions. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4065-4070	7.3	27
319	High temperature self-healing SiBCN ceramics derived from hyperbranched polyborosilazanes. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 506-517	8.7	14
318	Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. <i>Energy Storage Materials</i> , 2018 , 15, 361-367	19.4	61
317	Photonics and Optoelectronics of 2D Metal-Halide Perovskites. <i>Small</i> , 2018 , 14, e1800682	11	128
316	Bilayer Bismuth Selenide nanoplatelets based saturable absorber for ultra-short pulse generation (Invited). <i>Optics Communications</i> , 2017 , 395, 55-60	2	21
315	Graphene-Bi2Te3 Heterostructure as Broadband Saturable Absorber for Ultra-Short Pulse Generation in Er-Doped and Yb-Doped Fiber Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 195-199	3.8	36
314	Polarized light source based on graphene-nanoribbon hybrid structure. <i>Optics Communications</i> , 2017 , 395, 76-81	2	6
313	Diode-pumped Nd:LuAG ceramic laser on 4 F 3/2 - 4 I 13/2 transition. <i>Optical Materials</i> , 2017 , 71, 121-12	243.3	3
312	Can a Black Phosphorus Schottky Barrier Transistor Be Good Enough?. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 3959-3966	9.5	55
311	Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 95, 229-236	8.4	82
310	TiL -Coordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. <i>Small</i> , 2017 , 13, 1602896	11	198
309	Black Phosphorus: Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics (Adv. Mater. 1/2017). <i>Advanced Materials</i> , 2017 , 29,	24	9
308	Filtration effects of graphene nanoplatelets in resin infusion processes: Problems and possible solutions. <i>Composites Science and Technology</i> , 2017 , 139, 138-145	8.6	36
307	Strain enhanced lithium adsorption and diffusion on silicene. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6563-6568	3.6	22
306	Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. <i>Nano Energy</i> , 2017 , 34, 131-140	17.1	162
305	Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. <i>Scientific Reports</i> , 2017 , 7, 423	3 54 .9	121
304	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3007-3013	7.1	121

(2017-2017)

303	Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. <i>Chemistry of Materials</i> , 2017 , 29, 2191-2201	9.6	194
302	A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6581-6588	13	132
301	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. <i>Advanced Science</i> , 2017 , 4, 1600305	13.6	224
300	Non-Isothermal Crystallization Kinetics of Polyamide 6/h-Boron Nitride Composites. <i>Journal of Macromolecular Science - Physics</i> , 2017 , 56, 170-177	1.4	4
299	Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation. <i>Advanced Optical Materials</i> , 2017 , 5, 1700026	8.1	106
298	Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes. <i>ACS Photonics</i> , 2017 , 4, 1271-1278	6.3	68
297	Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4543-4548	7.1	30
296	Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. <i>Nanoscale</i> , 2017 , 9, 8096-8101	7.7	183
295	Renewable energy: Present research and future scope of Artificial Intelligence. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 77, 297-317	16.2	122
294	Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability. <i>ACS Photonics</i> , 2017 , 4, 1466-1476	6.3	152
293	Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications. <i>ACS Photonics</i> , 2017 , 4, 1531-1538	6.3	55
292	Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 881-884	2.2	18
291	Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6129-6135	7.1	93
290	Electrochemical Analysis the influence of Propargyl Methanesulfonate as Electrolyte Additive for Spinel LTO Interface Layer. <i>Electrochimica Acta</i> , 2017 , 241, 208-219	6.7	25
289	Nano-Engineered Hierarchical Carbon Fibres and Their Composites: Preparation, Properties and Multifunctionalities 2017 , 101-116		2
288	A flexible transparent colorimetric wrist strap sensor. <i>Nanoscale</i> , 2017 , 9, 869-874	7.7	81
287	Frequency stabilization of a dual-frequency Yb3+:GdAl3(BO3)4 laser via nonlinear loss modulation in black phosphorus. <i>Laser Physics Letters</i> , 2017 , 14, 065802	1.5	5
286	Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11896-11900	16.4	391

285	Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. <i>Angewandte Chemie</i> , 2017 , 129, 12058-12062	3.6	78
284	Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 101, 151-159	8.4	46
283	Monolayer Bismuthene-Metal Contacts: A Theoretical Study. <i>ACS Applied Materials & Discourse (Material Study ACS Applied Materials & Discourse)</i> , 2017 , 9, 23128-23140	9.5	55
282	Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures. <i>Sensors and Actuators B: Chemical</i> , 2017 , 252, 116-126	8.5	54
281	Few-Layer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. <i>Advanced Energy Materials</i> , 2017 , 7, 1700396	21.8	251
280	Synergistic effects of filler size on thermal annealing-induced percolation in polylactic acid (PLA)/graphite nanoplatelet (GNP) nanocomposites. <i>Nanocomposites</i> , 2017 , 3, 67-75	3.4	11
279	Schottky Barriers in Bilayer Phosphorene Transistors. <i>ACS Applied Materials & Discourted Materials & Discourt Mat</i>	9.5	81
278	Concave gold bipyramids bound with multiple high-index facets: improved Raman and catalytic activities. <i>Nanoscale</i> , 2017 , 9, 5879-5886	7.7	27
277	Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. <i>Advanced Functional Materials</i> , 2017 , 27, 1606834	15.6	244
276	Two-Dimensional CHNHPbI Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Discourt & Discourt & Discou</i>	9.5	231
275	All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation. <i>ACS Photonics</i> , 2017 , 4, 2852-2861	6.3	128
274	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. <i>Small</i> , 2017 , 13, 1702739	11	123
273	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 36137-36145	9.5	138
272	Metal-Ion-Modified Black Phosphorus with Enhanced Stability and Transistor Performance. <i>Advanced Materials</i> , 2017 , 29, 1703811	24	353
271	Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. <i>Nature Communications</i> , 2017 , 8, 677	17.4	17
270	Dynamics of Dispersive Wave Generation in Gas-Filled Photonic Crystal Fiber with the Normal Dispersion. <i>Advances in Condensed Matter Physics</i> , 2017 , 2017, 1-9	1	
269	Diode-pumped mode-locked Tm:LuAG laser at 2 In based on GaSb-SESAM. <i>Optics Letters</i> , 2017 , 42, 839-842	3	23
268	Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker. <i>Optics Letters</i> , 2017 , 42, 4942-4945	3	29

(2017-2017)

267	Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. <i>2D Materials</i> , 2017 , 4, 045010	5.9	222
266	Universal Control on Pyroresistive Behavior of Flexible Self-Regulating Heating Devices. <i>Advanced Functional Materials</i> , 2017 , 27, 1702253	15.6	23
265	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. <i>Materials Horizons</i> , 2017 , 4, 997-1019	14.4	250
264	Low-threshold optical bistability in a metasurface with graphene. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 434003	3	11
263	Synthesis of Ultrathin Composition Graded Doped Lateral WSe/WS Heterostructures. <i>ACS Applied Materials & ACS Applied & AC</i>	9.5	17
262	Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. <i>Nature Communications</i> , 2017 , 8, 278	17.4	225
261	Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application. <i>Advanced Functional Materials</i> , 2017 , 27, 1702437	, 15.6	93
2 60	Current progress in black phosphorus materials and their applications in electrochemical energy storage. <i>Nanoscale</i> , 2017 , 9, 13384-13403	7.7	171
259	Period-Doubling and Quadrupling Bifurcation of Vector Soliton Bunches in a Graphene Mode Locked Fiber Laser. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-8	1.8	20
258	2DMaterials-Based Quantum Dots: Gateway Towards Next-Generation Optical Devices. <i>Advanced Optical Materials</i> , 2017 , 5, 1700257	8.1	51
257	Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Electrical Contacts in Monolayer Arsenene Devices.	7 ₉₃₅ 292	2846
256	Field-Induced n-Doping of Black Phosphorus for CMOS Compatible 2D Logic Electronics with High Electron Mobility. <i>Advanced Functional Materials</i> , 2017 , 27, 1702211	15.6	80
255	Innentitelbild: Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy (Angew. Chem. 39/2017). <i>Angewandte Chemie</i> , 2017 , 129, 11816-11816	3.6	
254	Skyrmion dynamics în a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition. <i>Nature Communications</i> , 2017 , 8, 1717	17.4	95
253	2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics. <i>Advanced Optical Materials</i> , 2017 , 5, 1700884	8.1	139
252	Black phosphorus: a two-dimensional reductant for in situ nanofabrication. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	44
251	Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5433-5440	7.3	103
250	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. <i>Advanced Materials</i> , 2017 , 29, 1603276	24	546

249	Stacking stability and sliding mechanism in weakly bonded 2D transition metal carbides by van der Waals force. <i>RSC Advances</i> , 2017 , 7, 55912-55919	3.7	29
248	Fundamental and harmonic mode-locking at 2.1 th with black phosphorus saturable absorber. <i>Optics Express</i> , 2017 , 25, 16916-16921	3.3	84
247	34 nm-wavelength-tunable picosecond Ho/Pr-codoped ZBLAN fiber laser. <i>Optics Express</i> , 2017 , 25, 1917	′ 0.3 91	72 8
246	High-power passively Q-switched 2 Ih all-solid-state laser based on a Bi_2Te_3 saturable absorber. <i>Photonics Research</i> , 2017 , 5, 461	6	69
245	Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. <i>Photonics Research</i> , 2017 , 5, 662	6	55
244	EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer. <i>International Journal of Nanomedicine</i> , 2017 , 12, 6239-62	. 7 7 ³	39
243	Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. <i>Materials</i> , 2017 , 10,	3.5	51
242	Graphite Nanoplatelet Modified Epoxy Resin for Carbon Fibre Reinforced Plastics with Enhanced Properties. <i>Journal of Nanomaterials</i> , 2017 , 2017, 1-10	3.2	27
241	Few-layer antimonene decorated microfiber as an all optical thresholder and wavelength converter for optical signal processing 2017 ,		2
240	Broadband Nonlinear Optical Response in Few-Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. <i>Advanced Optical Materials</i> , 2017 , 5, 1700301	8.1	207
239	Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn2O4 with superior performance for lithium-ion batteries. <i>Green Chemistry</i> , 2016 , 18, 662-666	10	21
238	Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. <i>Biomaterials</i> , 2016 , 74, 144-54	15.6	209
237	Effect of mixed fillers on positive temperature coefficient of conductive polymer composites. <i>Nanocomposites</i> , 2016 , 2, 58-64	3.4	19
236	In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites. <i>ACS Applied Materials & District Research</i> , 8, 24112-22	9.5	46
235	Quantum Dots: Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots (Advanced Optical Materials 8/2016). <i>Advanced Optical Materials</i> , 2016 , 4, 1222-1222	8.1	6
234	Black Phosphorus Quantum Dots as an Efficient Saturable Absorber for Bound Soliton Operation in an Erbium Doped Fiber Laser. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-10	1.8	25
233	One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties. <i>Journal of Electronic Materials</i> , 2016 , 45, 4350-4356	1.9	10
232	On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. <i>ACS Nano</i> , 2016 , 10, 8474-81	16.7	73

(2016-2016)

231	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13850-13853	16.4	105
230	Polarization domain wall pulses in a microfiber-based topological insulator fiber laser. <i>Scientific Reports</i> , 2016 , 6, 29128	4.9	23
229	Photonics and optoelectronics of two-dimensional materials beyond graphene. <i>Nanotechnology</i> , 2016 , 27, 462001	3.4	203
228	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. <i>Nature Communications</i> , 2016 , 7, 12967	17.4	659
227	Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes. <i>ACS Applied Materials & Empty Interfaces</i> , 2016 , 8, 31385-31391	9.5	84
226	Dynamically Tuning the Up-conversion Luminescence of Er(3+)/Yb(3+) Co-doped Sodium Niobate Nano-crystals through Magnetic Field. <i>Scientific Reports</i> , 2016 , 6, 31327	4.9	19
225	Optimization of Three-Roll Mill Parameters for In-Situ Exfoliation of Graphene. <i>MRS Advances</i> , 2016 , 1, 1389-1394	0.7	4
224	Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. <i>Nanoscale</i> , 2016 , 8, 13273-9	7.7	123
223	Near-infrared wavelength-dependent nonlinear transmittance tailoring in glass ceramics containing Er3+:LaF3 nanocrystals. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6707-6712	7.1	17
222	Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. <i>Advanced Optical Materials</i> , 2016 , 4, 1223-1229	8.1	267
221	High-temperature behavior of monolayer graphyne and graphdiyne. Carbon, 2016, 99, 547-555	10.4	22
220	High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. <i>Sensors and Actuators B: Chemical</i> , 2016 , 226, 478-485	8.5	175
219	Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. <i>Nanoscale</i> , 2016 , 8, 1066-72	7.7	209
218	Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. <i>Optics Express</i> , 2016 , 24, 1814-22	3.3	70
217	Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. <i>Optics Express</i> , 2016 , 24, 2858-66	3.3	35
216	Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. <i>Nanoscale</i> , 2016 , 8, 6410-34	7.7	196
215	Black phosphorus as broadband saturable absorber for pulsed lasers from 1th to 2.7th wavelength. <i>Laser Physics Letters</i> , 2016 , 13, 045801	1.5	134
214	Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene B i2Te3heterostructure saturable absorber-based fiber laser. <i>Optical Engineering</i> , 2016 , 55, 081314	1.1	18

213	Asymmetric AgPd-AuNR heterostructure with enhanced photothermal performance and SERS activity. <i>Nanoscale</i> , 2016 , 8, 2242-8	7.7	22
212	Mode-locked Er-doped fiber laser with TiS2 saturable absorber 2016 ,		1
211	Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-8	3.2	13
210	Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering. <i>Optics Express</i> , 2016 , 24, 20571-9	3.3	15
209	Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. <i>Optics Express</i> , 2016 , 24, 25933-25942	3.3	163
208	Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. <i>Optics Express</i> , 2016 , 24, 30289-30295	3.3	79
207	Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus. <i>Photonics Research</i> , 2016 , 4, 286	6	52
206	Flexible Transparent Electronic Gas Sensors. <i>Small</i> , 2016 , 12, 3748-56	11	189
205	2 En passively Q-switched laser based on black phosphorus. Optical Materials Express, 2016, 6, 2374	2.6	97
204	Metabolizable Ultrathin Bi2 Se3 Nanosheets in Imaging-Guided Photothermal Therapy. <i>Small</i> , 2016 , 12, 4136-45	11	168
203	Theoretical investigation of the phonon-polariton mode in Czochralski-grown piezoelectric superlattice. <i>Superlattices and Microstructures</i> , 2016 , 97, 167-175	2.8	2
202	Pulsed Lasers Employing Solution-Processed Plasmonic Cu3- x P Colloidal Nanocrystals. <i>Advanced Materials</i> , 2016 , 28, 3535-42	24	55
201	Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers. <i>Annalen Der Physik</i> , 2016 , 528, 543-550	2.6	49
200	Controlled Generation of Bright or Dark Solitons in a Fiber Laser by Intracavity Nonlinear Absorber. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-12	1.8	3
199	Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. <i>Scientific Reports</i> , 2016 , 6, 30361	4.9	197
198	Dynamically tuning the optical properties of Europium-doped sodium niobate nano-crystals through magnetic field. <i>Materials Research Express</i> , 2016 , 3, 115014	1.7	3
197	Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation. Scientific Reports, 2016, 6, 217	99 4.9	15
196	Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. <i>Scientific Reports</i> , 2016 , 6, 23186	4.9	116

195	Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface. <i>Scientific Reports</i> , 2016 , 6, 37476	4.9	5
194	Graphene Delivery Systems for Hierarchical Fiber Reinforced Composites. MRS Advances, 2016 , 1, 1339	-163 / 4	8
193	Validation of metabolic tumor volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. <i>Oral Oncology</i> , 2016 , 57, 6-14	4.4	14
192	Efficient plasma-enhanced method for layered LiNi1/3Co1/3Mn1/3O2 cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries. <i>Nanoscale</i> , 2016 , 8, 11234-40	7.7	28
191	Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution. <i>Electrochimica Acta</i> , 2016 , 200, 142-151	6.7	103
190	Passive Q-switching of Yb bulk lasers by a graphene saturable absorber. <i>Applied Physics B: Lasers and Optics</i> , 2016 , 122, 1	1.9	12
189	Broadband third order nonlinear optical responses of bismuth telluride nanosheets. <i>Optical Materials Express</i> , 2016 , 6, 2244	2.6	40
188	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13849-13853	16.4	223
187	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. <i>Angewandte Chemie</i> , 2016 , 128, 14053-14057	3.6	76
186	Passively Q-switched mid-infrared fluoride fiber laser around 3µm using a tungsten disulfide (WS2) saturable absorber. <i>Laser Physics Letters</i> , 2016 , 13, 105108	1.5	65
185	A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide. <i>Journal of Lightwave Technology</i> , 2016 , 34, 4948-4953	4	47
184	Photothermal Therapy: Metabolizable Ultrathin Bi2Se3 Nanosheets in Imaging-Guided Photothermal Therapy (Small 30/2016). <i>Small</i> , 2016 , 12, 4158-4158	11	2
183	Recent Progresses in Integrated Nanoplasmonic Devices Based on Propagating Surface Plasmon Polaritons. <i>Plasmonics</i> , 2015 , 10, 1841-1852	2.4	18
182	Photoelectrochemical-type sunlight photodetector based on MoS 2 /graphene heterostructure. <i>2D Materials</i> , 2015 , 2, 035011	5.9	136
181	Static and dynamic percolation of phenoxy/carbon nanotube nanocomposites. <i>European Polymer Journal</i> , 2015 , 68, 128-138	5.2	25
180	Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 15955-60	9.5	60
179	Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. <i>Optics Express</i> , 2015 , 23, 11183-94	3.3	541
178	Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature. <i>RSC Advances</i> , 2015 , 5, 41050-41058	3.7	43

		Han Zhang	
177	Carbon coated to improve the electrochemical properties of LiMn2O4 cathode material synthesized by the novel acetone hydrothermal method. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 119, 1069-1074	2.6	13
176	PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5391-9	9.5	93
175	Investigation of the optical performance in straight hybrid plasmonic waveguides with concentric nanoring and nanodisk. <i>Journal of Nanophotonics</i> , 2015 , 9, 093095	1.1	
174	Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-11	1.8	7
173	Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser. <i>Optics Express</i> , 2015 , 23, 6418-27	3.3	109
172	Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer. <i>Optics Express</i> , 2015 , 23, 7681-93	3.3	96
171	Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime. <i>Photonics Research</i> , 2015 , 3, 214	6	74
170	Soliton fiber laser mode locked with two types of film-based Bi_2Te_3 saturable absorbers. <i>Photonics Research</i> , 2015 , 3, A43	6	58
169	Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 lb. <i>Optics Express</i> , 2015 , 23, 24713-8	3.3	222
168	Introduction to the Photonics Based on Two-dimensional Materials feature issue. <i>Photonics Research</i> , 2015 , 3, PBTD1	6	7
167	3-fh Mid-infrared pulse generation using topological insulator as the saturable absorber. <i>Optics Letters</i> , 2015 , 40, 3659-62	3	132
166	Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. <i>Optics Express</i> , 2015 , 23, 12823-33	3.3	734
165	Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. <i>Optics Express</i> , 2015 , 23, 20030-9	3.3	322
164	Z-scan measurement of the nonlinear refractive index of Nd(3+), Y(3+)-codoped CaF(2) and SrF(2) crystals. <i>Applied Optics</i> , 2015 , 54, 953-8	1.7	16
163	Superior electrochemical properties of Li(Ni1/3Co1/3Mn1/3)O2/C synthesized by the precursor solid-phase method. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 121, 23-28	2.6	1
162	Localized toughening of carbon/epoxy laminates using dissolvable thermoplastic interleaves and electrospun fibres. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 79, 116-126	8.4	43
161	Plasma-assisted highly efficient synthesis of Li(Ni1/3Co1/3Mn1/3)O2 cathode materials with	3.7	11

superior performance for Li-ion batteries. RSC Advances, 2015, 5, 75145-75148

Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. Optics

3.3

203

Express, 2015, 23, 22643-8

160

(2015-2015)

159	Efficient quantum dot light emitting devices with ethanol treated PEDOT: PSS hole injection layer. <i>Synthetic Metals</i> , 2015 , 209, 484-489	3.6	11
158	BiBeIQ-switched Nd:YAG ceramic waveguide laser. <i>Optics Letters</i> , 2015 , 40, 637-40	3	37
157	Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. <i>Advanced Materials</i> , 2015 , 27, 676-81	24	216
156	Flexible Organic Electronics in Biology: Materials and Devices. <i>Advanced Materials</i> , 2015 , 27, 7493-527	24	272
155	Multi-pulses dynamic patterns in a topological insulator mode-locked ytterbium-doped fiber laser. <i>Optics Communications</i> , 2015 , 335, 65-72	2	19
154	Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. <i>Materials Science and Engineering C</i> , 2015 , 46, 41-51	8.3	37
153	Phosphorene: From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics (Adv. Funct. Mater. 45/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 7100-7100	15.6	4
152	Pulsed Lasers: Black Phosphorus P olymer Composites for Pulsed Lasers (Advanced Optical Materials 10/2015). <i>Advanced Optical Materials</i> , 2015 , 3, 1446-1446	8.1	6
151	Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. <i>Scientific Reports</i> , 2015 , 5, 16372	4.9	147
150	Solution-processed yellow-white light-emitting diodes based on mixed-solvent dispersed luminescent ZnO nanocrystals. <i>Applied Physics Letters</i> , 2015 , 106, 263506	3.4	6
150 149		3.4	26
	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, 141111 Illtracmall Black Bhosphorus Quantum Dots: Synthesis and Use as Bhotphormal Agents.		26
149	luminescent ZnO nanocrystals. <i>Applied Physics Letters</i> , 2015 , 106, 263506 Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. <i>Applied Physics Letters</i> , 2015 , 107, 141111 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents.	3.4	26
149	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, 141111 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-30 Enhancing the saturable absorption and carrier dynamics of graphene with plasmonic nanowires.	3.4	26 745
149 148 147	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, 141111 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-30 Enhancing the saturable absorption and carrier dynamics of graphene with plasmonic nanowires. Physica Status Solidi (B): Basic Research, 2015, 252, 2159-2166 Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing. Small, 2015, 11, 5409-15	3.4 16.4 1.3	26 745 14
149 148 147 146	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, 141111 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-30 Enhancing the saturable absorption and carrier dynamics of graphene with plasmonic nanowires. Physica Status Solidi (B): Basic Research, 2015, 252, 2159-2166 Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing. Small, 2015, 11, 5409-15 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents.	3.4 16.4 1.3	2674514186
149 148 147 146	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, 141111 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-30 Enhancing the saturable absorption and carrier dynamics of graphene with plasmonic nanowires. Physica Status Solidi (B): Basic Research, 2015, 252, 2159-2166 Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing. Small, 2015, 11, 5409-15 Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie, 2015, 127, 11688-11692 From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering,	3.4 16.4 1.3 11 3.6	26 745 14 186 201

141	Few-Layer Topological Insulator for All-Optical Signal Processing Using the Nonlinear Kerr Effect. <i>Advanced Optical Materials</i> , 2015 , 3, 1769-1778	8.1	76
140	Integrated Damage Sensing in Fibre-Reinforced Composites with Extremely Low Carbon Nanotube Loadings. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-7	3.2	22
139	Graphene B i2Te3 Heterostructure as Saturable Absorber for Short Pulse Generation. <i>ACS Photonics</i> , 2015 , 2, 832-841	6.3	174
138	Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. <i>Nano Research</i> , 2015 , 8, 1522-1534	10	210
137	A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. <i>RSC Advances</i> , 2015 , 5, 92995-93001	3.7	12
136	The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. <i>Nanocomposites</i> , 2015 , 1, 167-184	3.4	87
135	Bound States of Vector Dissipative Solitons. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-8	1.8	5
134	Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. <i>Optics Letters</i> , 2015 , 40, 4767-70	3	68
133	Plasma-Assisted Sulfur Doping of LiMn2O4 for High-Performance Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 28776-28782	3.8	36
132	Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. <i>Scientific Reports</i> , 2015 , 5, 8311	4.9	131
131	Formation and Energy Exchange of Vector Dark Solitons in Fiber Lasers. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-9	1.8	3
130	Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer. <i>Scientific Reports</i> , 2015 , 5, 8207	4.9	29
129	Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 70, 102-110	8.4	158
128	Topological Insulator Solution Filled in Photonic Crystal Fiber for Passive Mode-Locked Fiber Laser. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 264-267	2.2	79
127	Microfiber-Based Highly Nonlinear Topological Insulator Photonic Device for the Formation of Versatile Multi-Soliton Patterns in a Fiber Laser. <i>Journal of Lightwave Technology</i> , 2015 , 33, 2056-2061	4	34
126	Investigation of antibacterial and biofilm inhibition activity of Michelia figo leaf extracts against dental bacterium. <i>Planta Medica</i> , 2015 , 81,	3.1	8
125	Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. <i>Scientific Reports</i> , 2014 , 4, 6346	4.9	323
124	Critical coupling with graphene-based hyperbolic metamaterials. <i>Scientific Reports</i> , 2014 , 4, 5483	4.9	129

123	High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. <i>Nature Communications</i> , 2014 , 5, 2995	17.4	556
122	The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. <i>Laser Physics Letters</i> , 2014 , 11, 05510	1 ^{1.5}	108
121	Nanosecond \$Q\$ -Switched Erbium-Doped Fiber Laser With Wide Pulse-Repetition-Rate Range Based on Topological Insulator. <i>IEEE Journal of Quantum Electronics</i> , 2014 , 50, 393-396	2	29
120	Field electron emission of layered BiBelhanosheets with atom-thick sharp edges. <i>Nanoscale</i> , 2014 , 6, 8306-10	7.7	26
119	Large Energy, Wavelength Widely Tunable, Topological Insulator Q-Switched Erbium-Doped Fiber Laser. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 315-322	3.8	171
118	Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO 2 nanoparticles and loading MoS 2 nanosheets as Co-catalyst. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 19502-19512	6.7	144
117	High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. <i>Advanced Functional Materials</i> , 2014 , 24, 978-985	15.6	112
116	Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper. <i>Applied Optics</i> , 2014 , 53, 5117-22	1.7	38
115	(Q) -Switched Mode-Locked Nd:YVO4 Laser by Topological Insulator Bi2Te3 Saturable Absorber. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1912-1915	2.2	40
114	Topological Insulator Simultaneously Q-Switched Dual-Wavelength \$ hbox{Nd}:hbox{Lu}_{2}hbox{O}_{3}\$ Laser. <i>IEEE Photonics Journal</i> , 2014 , 6, 1-7	1.8	24
113	Dual-Wavelength Harmonically Mode-Locked Fiber Laser With Topological Insulator Saturable Absorber. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 983-986	2.2	118
112	Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter. <i>Applied Physics Express</i> , 2014 , 7, 024301	2.4	47
111	Femtosecond pulse generation from a topological insulator mode-locked fiber laser. <i>Optics Express</i> , 2014 , 22, 6868-73	3.3	211
110	Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 716	1.7	22
109	Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. <i>Optics Express</i> , 2014 , 22, 22841-6	3.3	140
108	Dark soliton fiber lasers. <i>Optics Express</i> , 2014 , 22, 19831-7	3.3	40
107	Stable high-energy Q-switched resonantly diode-pumped Er:YAG laser at 1645 nm. <i>Applied Optics</i> , 2014 , 53, 7773-7	0.2	11
106	Stable Single-Longitudinal-Mode Fiber Ring Laser Using Topological Insulator-Based Saturable Absorber. <i>Journal of Lightwave Technology</i> , 2014 , 32, 4438-4444	4	15

105	Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber. <i>Optics Letters</i> , 2014 , 39, 4591-4	3	296
104	Molybdenum disulfide (MoSDas a broadband saturable absorber for ultra-fast photonics. <i>Optics Express</i> , 2014 , 22, 7249-60	3.3	846
103	Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber. <i>Applied Optics</i> , 2014 , 53, 254-8	1.7	27
102	Broadband optical and microwave nonlinear response in topological insulator. <i>Optical Materials Express</i> , 2014 , 4, 587	2.6	170
101	Solution-gated graphene transistors for chemical and biological sensors. <i>Advanced Healthcare Materials</i> , 2014 , 3, 313-31	10.1	116
100	Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser. <i>Chinese Optics Letters</i> , 2014 , 12, 031405-31408	2.2	11
99	Evidence of dark solitons in all-normal-dispersion-fiber lasers. <i>Physical Review A</i> , 2013 , 88,	2.6	42
98	Experimental study on the multisoliton pattern formation in an erbium-doped fiber laser passively mode-locked by graphene saturable absorber. <i>Optical Engineering</i> , 2013 , 52, 044201	1.1	6
97	Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics. <i>ACS Applied Materials & Description (Control of CVD)</i> and the substrates of the control of	9.5	51
96	Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. <i>Optical Engineering</i> , 2013 , 52, 106105	1.1	20
95	Multilayer graphene for Q-switched mode-locking operation in an erbium-doped fiber laser. <i>Optics Communications</i> , 2013 , 300, 17-21	2	17
94	Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence. <i>Nanotechnology</i> , 2013 , 24, 315203	3.4	21
93	Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour. <i>Composites Science and Technology</i> , 2013 , 74, 85-90	8.6	131
92	Graphene sheet stacks forQ-switching operation of an erbium-doped fiber laser. <i>Laser Physics Letters</i> , 2013 , 10, 075102	1.5	15
91	Self-Assembled Topological Insulator: Bi\$_{2}\$Se\$_{3}\$ Membrane as a Passive Q-Switcher in an Erbium-Doped Fiber Laser. <i>Journal of Lightwave Technology</i> , 2013 , 31, 2857-2863	4	132
90	Order-disorder transition in a two-dimensional boron-carbon-nitride alloy. <i>Nature Communications</i> , 2013 , 4, 2681	17.4	125
89	Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 236, 1-9	8.9	27
88	Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control. <i>ACS Nano</i> , 2013 , 7, 6310-20	16.7	89

(2012-2013)

87	Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. <i>Nature Nanotechnology</i> , 2013 , 8, 594-601	28.7	1008
86	Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi_2Se_3 as a mode locker: erratum. <i>Optics Express</i> , 2013 , 21, 444	3.3	5
85	Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. <i>Optics Express</i> , 2013 , 21, 10010-8	3.3	110
84	Z-scan measurement of the refractive index of graphene: erratum. <i>Optics Letters</i> , 2013 , 38, 1566	3	1
83	2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. <i>Optics Letters</i> , 2013 , 38, 5212-5	3	347
82	Third order nonlinear optical property of BiBell Optics Express, 2013, 21, 2072-82	3.3	231
81	Topological Insulator: \$hbox{Bi}_{2}hbox{Te}_{3}\$ Saturable Absorber for the Passive Q-Switching Operation of an in-Band Pumped 1645-nm Er:YAG Ceramic Laser. <i>IEEE Photonics Journal</i> , 2013 , 5, 1500	707 ⁸ 15	o đ 7 87
80	Response to Comment on Ultra-short pulse generation by a topological insulator based saturable absorber[Appl. Phys. Lett. 103, 106101 (2013)]. <i>Applied Physics Letters</i> , 2013 , 103, 106102	3.4	1
79	Topological insulator as an optical modulator for pulsed solid-state lasers. <i>Laser and Photonics Reviews</i> , 2013 , 7, L77-L83	8.3	185
78	Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability. <i>Journal of Applied Physics</i> , 2013 , 113, 044309	2.5	108
77	GaN nanowire ultraviolet photodetector with a graphene transparent contact. <i>Applied Physics Letters</i> , 2013 , 103, 201103	3.4	119
76	Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers. <i>Optics Communications</i> , 2012 , 285, 1356-1361	2	31
75	Dynamics of quantum discord in photonic crystals. Optics Communications, 2012, 285, 2961-2966	2	5
74	Ultra-short pulse generation by a topological insulator based saturable absorber. <i>Applied Physics Letters</i> , 2012 , 101, 211106	3.4	469
73	Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber. <i>IEEE Photonics Journal</i> , 2012 , 4, 869-876	1.8	165
72	Tunable Hydrogen Separation in sp8p2 Hybridized Carbon Membranes: A First-Principles Prediction. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16634-16638	3.8	113
71	Microwave and optical saturable absorption in graphene. Optics Express, 2012, 20, 23201-14	3.3	196
70	Z-scan measurement of the nonlinear refractive index of graphene. <i>Optics Letters</i> , 2012 , 37, 1856-8	3	502

69	Saturable absorption in graphene at 800-nm band 2012 ,		5
68	Erbium-doped fiber laser passively mode-locked by a position-adjustable graphene saturable absorber. <i>Optical Engineering</i> , 2012 , 51, 084203	1.1	5
67	Polarization rotation vector solitons in a graphene mode-locked fiber laser. <i>Optics Express</i> , 2012 , 20, 27283-9	3.3	100
66	Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker. <i>Optics Express</i> , 2012 , 20, 27888-95	3.3	355
65	Towards mode-locked fiber laser using topological insulators 2012,		49
64	Graphene mode locked ultrafast fiber lasers 2011 ,		3
63	Fidelity of structured amplitude-damping channels. <i>Physica Scripta</i> , 2011 , 83, 045008	2.6	1
62	Dual-wavelength domain wall solitons in a fiber ring laser. <i>Optics Express</i> , 2011 , 19, 3525-30	3.3	66
61	Broadband graphene polarizer. <i>Nature Photonics</i> , 2011 , 5, 411-415	33.9	806
60	Theoretical investigation of phonon-polariton modes in undoped and ion-doped PPLN crystals. <i>Solid State Communications</i> , 2011 , 151, 1261-1265	1.6	2
59	Controlled entanglement of two atoms in photonic crystals. <i>Optics Communications</i> , 2011 , 284, 5323-53	328	6
58	The atom-photon entanglement of a two-level system embedded in double-band photonic band edge. <i>Optics Communications</i> , 2011 , 284, 2509-2514	2	1
57	Monolayer graphene as a saturable absorber in a mode-locked laser. <i>Nano Research</i> , 2011 , 4, 297-307	10	322
56	Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on inverse-Gaussian apodized fiber Bragg grating and its application in microwave generation. <i>Optical Fiber Technology</i> , 2011 , 17, 120-123	2.4	24
55	Evidence of High-Order Vector Dissipative Soliton in a Fiber Laser 2010 ,		1
54	Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. <i>Langmuir</i> , 2010 , 26, 11372-7	4	92
53	Erbium-Doped Fiber Lasers Operated in a Strong Normal Dispersion Regime at Low Repetition Rate. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1401-1403	2.2	3
52	Inverse-Gaussian apodized fiber Bragg grating for dual-wavelength lasing. <i>Applied Optics</i> , 2010 , 49, 137	73072	8

(2009-2010)

51	Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier. <i>Applied Optics</i> , 2010 , 49, 6855-60	0.2	12
50	Vector dark domain wall solitons in a fiber ring laser. <i>Optics Express</i> , 2010 , 18, 4428-33	3.3	112
49	Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. <i>Optics Express</i> , 2010 , 18, 26345-50	3.3	87
48	Dissipative soliton trapping in normal dispersion-fiber lasers. <i>Optics Letters</i> , 2010 , 35, 1902-4	3	42
47	Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter. <i>Optics Letters</i> , 2010 , 35, 2756-8	3	128
46	Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. <i>Optics Letters</i> , 2010 , 35, 3622-4	3	187
45	Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. <i>Applied Physics Letters</i> , 2010 , 96, 111112	3.4	402
44	Atomic multi-layer graphene for dissipative soliton generation in Ytterbium-doped fiber laser 2010,		1
43	Mode-locking of fiber lasers induced by residual polarization dependent loss of cavity components. <i>Laser Physics</i> , 2010 , 20, 1913-1917	1.2	26
42	Observation of dip-type sidebands in a soliton fiber laser. <i>Optics Communications</i> , 2010 , 283, 340-343	2	21
41	Vector dissipative solitons in graphene mode locked fiber lasers. <i>Optics Communications</i> , 2010 , 283, 33	3 4 -333	8118
40	Graphene P olymer Nanofiber Membrane for Ultrafast Photonics. <i>Advanced Functional Materials</i> , 2010 , 20, 782-791	15.6	382
39	Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion. <i>Laser Physics Letters</i> , 2010 , 7, 591-596	1.5	201
38	Soliton modulation instability in fiber lasers. <i>Physical Review A</i> , 2009 , 80,	2.6	28
37	Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. <i>Physical Review B</i> , 2009 , 80,	3.3	72
36	Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. <i>Advanced Functional Materials</i> , 2009 , 19, 3077-3083	15.6	1875
35	Probe absorption spectra of a V-type atom embedded in PBG reservoir. <i>Optik</i> , 2009 , 120, 689-695	2.5	
34	Dark pulse emission of a fiber laser. <i>Physical Review A</i> , 2009 , 80,	2.6	121

33	Coexistence of polarization-locked and polarization-rotating vector solitons in a fiber laser with SESAM. <i>Optics Letters</i> , 2009 , 34, 3059-61	3	49
32	Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion. <i>Optics Express</i> , 2009 , 17, 455-60	3.3	110
31	Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. <i>Optics Express</i> , 2009 , 17, 5580-4	3.3	235
30	Bunch of restless vector solitons in a fiber laser with SESAM. <i>Optics Express</i> , 2009 , 17, 8103-8	3.3	47
29	Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser. <i>Optics Express</i> , 2009 , 17, 12692-7	3.3	176
28	Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. <i>Optics Express</i> , 2009 , 17, 17630-5	3.3	447
27	Effective cavity dispersion shift induced by nonlinearity in a fiber laser. <i>Physical Review A</i> , 2009 , 80,	2.6	9
26	Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. <i>Applied Physics Letters</i> , 2009 , 95, 141103	3.4	386
25	A FLANGED PARALLEL-PLATE WAVEGUIDE PROBE FOR MICROWAVE IMAGING OF TUMORS. <i>Progress in Electromagnetics Research</i> , 2009 , 97, 45-60	3.8	5
24	Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser. <i>Optics Letters</i> , 2008 , 33, 2317-9	3	77
23	Soliton trapping in fiber lasers. <i>Optics Express</i> , 2008 , 16, 9528-33	3.3	98
22	Polarization rotation locking of vector solitons in a fiber ring laser. <i>Optics Express</i> , 2008 , 16, 10053-8	3.3	69
21	Coherent energy exchange between components of a vector soliton in fiber lasers. <i>Optics Express</i> , 2008 , 16, 12618-23	3.3	110
20	Observation of high-order polarization-locked vector solitons in a fiber laser. <i>Physical Review Letters</i> , 2008 , 101, 153904	7.4	183
19	Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion. <i>Optics Communications</i> , 2008 , 281, 3324-3326	2	6
18	Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion. <i>Optics Communications</i> , 2008 , 281, 3557-3560	2	19
17	Period-doubling of vector solitons in a ring fiber laser. <i>Optics Communications</i> , 2008 , 281, 5614-5617	2	16
16	Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser. <i>Optics Letters</i> , 2007 , 32, 1806-8	3	48

LIST OF PUBLICATIONS

15	Simulation for growth of multi-walled carbon nanotubes in electric field. <i>Computational Materials Science</i> , 2007 , 39, 616-626	3.2	16
14	Electric-field-induced microstructural transformation of carbon nanotubes. <i>Applied Physics Letters</i> , 2006 , 89, 063124	3.4	26
13	Large-scale synthesis of antimony nanobelt bundles. <i>Journal of Crystal Growth</i> , 2004 , 268, 215-221	1.6	28
12	Characteristics, properties, synthesis and advanced applications of 2D graphdiyne versus graphene. <i>Materials Chemistry Frontiers</i> ,	7.8	2
11	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. <i>Science China Materials</i> ,1	7.1	2
10	Vanadium Disulfide Nanosheets Synthesized by Facile Liquid-Phase Exfoliation for Ammonia Detection with High Selectivity. <i>Advanced Electronic Materials</i> ,2100567	6.4	О
9	Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications. <i>Nano Research</i> ,1	10	1
8	Two-dimensional selenium and its composites for device applications. <i>Nano Research</i> ,1	10	7
7	Recent Progress on Metal-Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics. <i>Advanced Functional Materials</i> ,2107363	15.6	6
6	Low-Dimensional Black Phosphorus in Sensor Applications: Advances and Challenges. <i>Advanced Functional Materials</i> ,2106484	15.6	4
5	Light-Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. <i>Advanced Optical Materials</i> ,2102186	8.1	2
4	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. <i>Advanced Electronic Materials</i> ,2101288	6.4	
3	Tunable Nonlinearity in 2D Graphdiyne Oxide for High-Performance All-Optical Modulation. <i>Advanced Optical Materials</i> ,2102537	8.1	1
2	Recent Advances in SnSe Nanostructures beyond Thermoelectricity. Advanced Functional Materials, 220	054.6	2
1	Recent Advances and Challenges in Ultrafast Photonics Enabled by Metal Nanomaterials. <i>Advanced Optical Materials</i> ,2200443	8.1	2