Tomohiro Fukushima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique Electronic Excitations at Highly Localized Plasmonic Field. Accounts of Chemical Research, 2022, 55, 809-818.	7.6	6
2	Rapid detection of donor-dependent photocatalytic hydrogen evolution by NMR spectroscopy. RSC Advances, 2022, 12, 12967-12970.	1.7	0
3	Inherent Promotion of Ionic Conductivity via Collective Vibrational Strong Coupling of Water with the Vacuum Electromagnetic Field. Journal of the American Chemical Society, 2022, 144, 12177-12183.	6.6	21
4	Vibrational Coupling of Water from Weak to Ultrastrong Coupling Regime via Cavity Mode Tuning. Journal of Physical Chemistry C, 2021, 125, 25832-25840.	1.5	12
5	Modulation of Graphene/Au(111) Interaction by Electrocatalytic Hydrogen Evolution Reaction. Journal of Physics: Conference Series, 2019, 1220, 012016.	0.3	2
6	Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media. Materials, 2019, 12, 211.	1.3	7
7	Molecularly defined graphitic interface toward proton manipulation. Current Opinion in Electrochemistry, 2019, 17, 158-166.	2.5	2
8	Photoredox Fischer Indole Synthesis. Synthesis, 2019, 51, 3214-3220.	1.2	11
9	Lateâ€Stage Functionalization of Arylacetic Acids by Photoredox atalyzed Decarboxylative Carbon–Heteroatom Bond Formation. Chemistry - A European Journal, 2018, 24, 9254-9258.	1.7	33
10	Minor Impact of Ligand Shell Steric Profile on Colloidal Nanocarbon Catalysis. Chemistry of Materials, 2017, 29, 495-498.	3.2	7
11	Synthesis, Structure, and Electrochemical Property of a Bimetallic Bis-2-pyridylidene Palladium Acetate Complex. Chemistry Letters, 2017, 46, 587-590.	0.7	13
12	Catalytic Dehydrogenative C–H Imidation of Arenes Enabled by Photo-generated Hole Donation to Sulfonimide. CheM, 2017, 2, 383-392.	5.8	86
13	Polymorphism of [6]Cycloparaphenylene for Packing Structure-dependent Host–Guest Interaction. Chemistry Letters, 2017, 46, 855-857.	0.7	26
14	Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks. Materials, 2017, 10, 1428.	1.3	19
15	Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nature Communications, 2016, 7, 10942.	5.8	577
16	Control of Molecular Rotor Rotational Frequencies in Porous Coordination Polymers Using a Solid-Solution Approach. Journal of the American Chemical Society, 2015, 137, 12183-12186.	6.6	78
17	Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts. Journal of the American Chemical Society, 2015, 137, 10926-10929.	6.6	95
18	Synthesis and Porous Properties of Chromium Azolate Porous Coordination Polymers. Inorganic Chemistry, 2014, 53, 9870-9875.	1.9	23

#	Article	IF	CITATIONS
19	High CO ₂ /CH ₄ and C2 Hydrocarbons/CH ₄ Selectivity in a Chemically Robust Porous Coordination Polymer. Advanced Functional Materials, 2013, 23, 3525-3530.	7.8	182
20	Highly Selective CO ₂ Adsorption Accompanied with Low-Energy Regeneration in a Two-Dimensional Cu(II) Porous Coordination Polymer with Inorganic Fluorinated PF ₆ [–] Anions. Inorganic Chemistry, 2013, 52, 280-285.	1.9	67
21	Postsynthesis Modification of a Porous Coordination Polymer by LiCl To Enhance H ⁺ Transport. Journal of the American Chemical Society, 2013, 135, 4612-4615.	6.6	75
22	Pore Design of Two-Dimensional Coordination Polymers toward Selective Adsorption. Inorganic Chemistry, 2013, 52, 3634-3642.	1.9	89
23	Programmed crystallization via epitaxial growth and ligand replacement towards hybridizing porous coordination polymer crystals. Dalton Transactions, 2013, 42, 15868.	1.6	27
24	Dense Coordination Network Capable of Selective CO ₂ Capture from C1 and C2 Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 9852-9855.	6.6	82
25	A Soft Copper(II) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chemistry - A European Journal, 2012, 18, 13117-13125.	1.7	69
26	Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Transactions, 2012, 41, 13791.	1.6	170
27	Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. Journal of the American Chemical Society, 2012, 134, 4501-4504.	6.6	326
28	A solid solution approach to 2D coordination polymers for CH ₄ /CO ₂ and CH ₄ /C ₂ H ₆ gas separation: equilibrium and kinetic studies. Chemical Science, 2012, 3, 116-120.	3.7	148
29	Modular Design of Domain Assembly in Porous Coordination Polymer Crystals via Reactivity-Directed Crystallization Process. Journal of the American Chemical Society, 2012, 134, 13341-13347.	6.6	105
30	Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by using the Viologen Moiety. Angewandte Chemie - International Edition, 2012, 51, 8369-8372.	7.2	74
31	Incarceration of Nanosized Silica into Porous Coordination Polymers: Preparation, Characterization, and Adsorption Property. Chemistry of Materials, 2011, 23, 1736-1741.	3.2	28
32	Solid Solutions of Soft Porous Coordination Polymers: Fineâ€Tuning of Gas Adsorption Properties. Angewandte Chemie - International Edition, 2010, 49, 4820-4824.	7.2	291
33	Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation. Chemical Communications, 2010, 46, 9229.	2.2	86