Yajun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473597/publications.pdf Version: 2024-02-01

YALLIN WANC

#	Article	IF	CITATIONS
1	Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production. IEEE Transactions on Industrial Informatics, 2023, 19, 2039-2048.	11.3	10
2	Nonlinear Correction for Fringe Projection Profilometry With Shifted-Phase Histogram Equalization. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	22
3	Intensity-Averaged Double Three-Step Phase-Shifting Algorithm with Color-Encoded Fringe Projection. Photonics, 2022, 9, 173.	2.0	2
4	Motion-induced error reduction for phase-shifting profilometry with phase probability equalization. Optics and Lasers in Engineering, 2022, 156, 107088.	3.8	13
5	Camera calibration with global LBP-coded phase-shifting wedge grating arrays. Optics and Lasers in Engineering, 2021, 136, 106314.	3.8	14
6	Two-Digit Phase-Coding Strategy for Fringe Projection Profilometry. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	22
7	Modified three-wavelength phase unwrapping algorithm for dynamic three-dimensional shape measurement. Optics Communications, 2021, 480, 126409.	2.1	13
8	Flexible Calibration Method of Electronically Focus-Tunable Lenses. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	4
9	DymSLAM: 4D Dynamic Scene Reconstruction Based on Geometrical Motion Segmentation. IEEE Robotics and Automation Letters, 2021, 6, 550-557.	5.1	20
10	Improved spatial-shifting two-wavelength algorithm for 3D shape measurement with a look-up table. Applied Optics, 2021, 60, 4878.	1.8	4
11	Motion induced error reduction methods for phase shifting profilometry: A review. Optics and Lasers in Engineering, 2021, 141, 106573.	3.8	45
12	Real-time motion-induced error compensation for 4-step phase-shifting profilometry. Optics Express, 2021, 29, 23822.	3.4	27
13	U2-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation. Remote Sensing, 2021, 13, 60.	4.0	9
14	Deep-learning-based adaptive camera calibration for various defocusing degrees. Optics Letters, 2021, 46, 5537.	3.3	6
15	Dynamic three-dimensional shape measurement with a complementary phase-coding method. Optics and Lasers in Engineering, 2020, 127, 105982.	3.8	38
16	Fourier-transform-based two-stage camera calibration method with simple periodical pattern. Optics and Lasers in Engineering, 2020, 133, 106121.	3.8	12
17	Object Detection Based on Global-Local Saliency Constraint in Aerial Images. Remote Sensing, 2020, 12, 1435.	4.0	31
18	Active shape from projection defocus profilometry. Optics and Lasers in Engineering, 2020, 134, 106277.	3.8	8

Yajun Wang

#	Article	IF	CITATIONS
19	Multilevel symmetric pattern design and optimization for high-speed and high-accuracy 3D shape measurement. Optics and Laser Technology, 2020, 126, 106103.	4.6	8
20	Two-wavelength phase-shifting method with four patterns for three-dimensional shape measurement. Optical Engineering, 2020, 59, 1.	1.0	8
21	Spatial binary coding method for stripe-wise phase unwrapping. Applied Optics, 2020, 59, 4279.	1.8	16
22	Hilbert transform-based crosstalk compensation for color fringe projection profilometry. Optics Letters, 2020, 45, 2199.	3.3	16
23	Adaptive Binocular Fringe Dynamic Projection Method for High Dynamic Range Measurement. Sensors, 2019, 19, 4023.	3.8	17
24	Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera. Measurement Science and Technology, 2019, 30, 075202.	2.6	19
25	Differentially Deep Subspace Representation for Unsupervised Change Detection of SAR Images. Remote Sensing, 2019, 11, 2740.	4.0	8
26	Fringe Phase-Shifting Field Based Fuzzy Quotient Space-Oriented Partial Differential Equations Filtering Method for Gaussian Noise-Induced Phase Error. Sensors, 2019, 19, 5202.	3.8	5
27	Enhanced phase-coding method for three-dimensional shape measurement with half-period codeword. Applied Optics, 2019, 58, 7359.	1.8	29
28	Stereo calibration with absolute phase target. Optics Express, 2019, 27, 22254.	3.4	20
29	Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling. Optics Express, 2019, 27, 23948.	3.4	14
30	Depth range enhancement of binary defocusing technique based on multi-frequency phase merging. Optics Express, 2019, 27, 36717.	3.4	13
31	Defocused camera calibration with a conventional periodic target based on Fourier transform. Optics Letters, 2019, 44, 3254.	3.3	22
32	High dynamic range 3D shape measurement based on multispectral imaging. , 2019, , .		0
33	Real-time high dynamic range 3D scanning with RGB camera. , 2019, , .		0
34	High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device. Optics and Lasers in Engineering, 2018, 107, 176-181.	3.8	40
35	Binarized dual phase-shifting method for high-quality 3D shape measurement. Applied Optics, 2018, 57, 6632.	1.8	12
36	Motion induced phase error reduction using a Hilbert transform. Optics Express, 2018, 26, 34224.	3.4	43

YAJUN WANG

#	Article	IF	CITATIONS
37	High dynamic range 3D measurement based on spectral modulation and hyperspectral imaging. Optics Express, 2018, 26, 34442.	3.4	16
38	Optimal carrier frequency selection for high-speed 3D shape measurement with double-pattern pulse width modulation techniques. , 2018, , .		0
39	Improved phase-coding methods with fewer patterns for 3D shape measurement. Optics Communications, 2017, 401, 6-10.	2.1	15
40	Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement. Optics Express, 2017, 25, 30177.	3.4	22
41	Modified Gray-Level Coding Method for Absolute Phase Retrieval. Sensors, 2017, 17, 2383.	3.8	16
42	Quantized phase coding and connected region labeling for absolute phase retrieval. Optics Express, 2016, 24, 28613.	3.4	56
43	Digital micromirror transient response influence on superfast 3D shape measurement. Optics and Lasers in Engineering, 2014, 58, 19-26.	3.8	14
44	Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques. Optics and Lasers in Engineering, 2014, 54, 236-246.	3.8	123
45	3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique. Optics Express, 2013, 21, 5822.	3.4	107
46	Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing. Applied Optics, 2012, 51, 861.	1.8	58
47	Three-dimensional shape measurement with binary dithered patterns. Applied Optics, 2012, 51, 6631.	1.8	142
48	Novel phase-coding method for absolute phase retrieval. Optics Letters, 2012, 37, 2067.	3.3	186
49	Superfast multifrequency phase-shifting technique with optimal pulse width modulation. Optics Express, 2011, 19, 5149.	3.4	128
50	3D shape measurement technique for multiple rapidly moving objects. Optics Express, 2011, 19, 8539.	3.4	87
51	Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing. Optics Letters, 2010, 35, 4121.	3.3	130