Hervé Giordani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/247352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration. Geoscientific Model Development, 2022, 15, 3347-3370.	3.6	1
2	An Eddyâ€Diffusivity Massâ€Flux Parameterization for Modeling Oceanic Convection. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002078.	3.8	7
3	Frontogenesis of the Angola–Benguela Frontal Zone. Ocean Science, 2019, 15, 83-96.	3.4	9
4	PIRATA: A Sustained Observing System for Tropical Atlantic Climate Research and Forecasting. Earth and Space Science, 2019, 6, 577-616.	2.6	63
5	The Tropical Atlantic Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	80
6	Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms. Journal of Geophysical Research: Oceans, 2018, 123, 1745-1776.	2.6	71
7	Main processes of the Atlantic cold tongue interannual variability. Climate Dynamics, 2018, 50, 1495-1512.	3.8	11
8	Seasonal and Interannual Mixed‣ayer Heat Budget Variability in the Western Tropical Atlantic From Argo Floats (2007–2012). Journal of Geophysical Research: Oceans, 2018, 123, 5298-5322.	2.6	8
9	Dense water formation in the northâ€western M editerranean area during HyMeXâ€SOP2 in 1/36° ocean simulations: Oceanâ€atmosphere coupling impact. Journal of Geophysical Research: Oceans, 2017, 122, 5749-5773.	2.6	10
10	A PV-approach for dense water formation along fronts: Application to the Northwestern Mediterranean. Journal of Geophysical Research: Oceans, 2017, 122, 995-1015.	2.6	14
11	An inverse method to derive surface fluxes from the closure of oceanic heat and water budgets: Application to the northâ€western Mediterranean Sea. Journal of Geophysical Research: Oceans, 2017, 122, 2884-2908.	2.6	7
12	Impact of the Mesoscale Dynamics on Ocean Deep Convection: The 2012–2013 Case Study in the Northwestern Mediterranean Sea. Journal of Geophysical Research: Oceans, 2017, 122, 8813-8840.	2.6	12
13	Highâ€resolution air–sea coupling impact on two heavy precipitation events in the Western Mediterranean. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2448-2462.	2.7	28
14	SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geoscientific Model Development, 2017, 10, 4207-4227.	3.6	50
15	HyMeX-SOP2: The Field Campaign Dedicated to Dense Water Formation in the Northwestern Mediterranean. , 2016, 29, 196-206.		33
16	Characterization of air–sea exchanges over the Western Mediterranean Sea during HyMeX SOP1 using the AROME–WMED model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 173-187.	2.7	27
17	Dense water formation in the northâ€western Mediterranean area during HyMeXâ€SOP2 in 1/36° ocean simulations: Sensitivity to initial conditions. Journal of Geophysical Research: Oceans, 2016, 121, 5549-5569.	2.6	17
18	Atmospheric response to seaâ€surface temperature in the eastern equatorial Atlantic at quasiâ€biweekly timeâ€scales. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1700-1714.	2.7	9

Hervé Giordani

#	Article	IF	CITATIONS
19	Lagrangian sources of frontogenesis in the equatorial Atlantic front. Climate Dynamics, 2014, 43, 3147-3162.	3.8	5
20	Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model?. Climate Dynamics, 2014, 43, 2963-2984.	3.8	33
21	Ocean Mixed Layer responses to intense meteorological events during HyMeX-SOP1 from a high-resolution ocean simulation. Ocean Modelling, 2014, 84, 84-103.	2.4	25
22	Intraseasonal mixedâ€layer heat budget in the equatorial Atlantic during the cold tongue development in 2006. Journal of Geophysical Research: Oceans, 2013, 118, 650-671.	2.6	31
23	The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geoscientific Model Development, 2013, 6, 929-960.	3.6	527
24	Coupling between the Atlantic cold tongue and the West African monsoon in boreal spring and summer. Journal of Geophysical Research, 2011, 116, .	3.3	102
25	A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign. Ocean Dynamics, 2011, 61, 1-20.	2.2	20
26	Diagnosing vertical motion in the Equatorial Atlantic. Ocean Dynamics, 2011, 61, 1995-2018.	2.2	15
27	Equatorial upperâ€ocean dynamics and their interaction with the West African monsoon. Atmospheric Science Letters, 2011, 12, 24-30.	1.9	63
28	Impact of the Ocean Mixed Layer Diurnal Variations on the Intraseasonal Variability of Sea Surface Temperatures in the Atlantic Ocean*. Journal of Climate, 2011, 24, 2889-2914.	3.2	11
29	Summer interactions between weather regimes and surface ocean in the North-Atlantic region. Climate Dynamics, 2010, 34, 527-546.	3.8	14
30	Why Were Sea Surface Temperatures so Different in the Eastern Equatorial Atlantic in June 2005 and 2006?. Journal of Physical Oceanography, 2009, 39, 1416-1431.	1.7	58
31	Effects of the air–sea coupling time frequency on the ocean response during Mediterranean intense events. Ocean Dynamics, 2009, 59, 539-549.	2.2	12
32	Twoâ€way oneâ€dimensional highâ€resolution air–sea coupled modelling applied to Mediterranean heavy rain events. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 187-204.	2.7	27
33	Sensitivity of three Mediterranean heavy rain events to two different sea surface fluxes parameterizations in highâ€resolution numerical modeling. Journal of Geophysical Research, 2008, 113, .	3.3	21
34	A high-resolution simulation of the ocean during the POMME experiment: Mesoscale variability and near surface processes. Journal of Geophysical Research, 2007, 112, .	3.3	12
35	Sensitivity of torrential rain events to the sea surface temperature based on high-resolution numerical forecasts. Journal of Geophysical Research, 2006, 111, .	3.3	104
36	Advanced insights into sources of vertical velocity in the ocean. Ocean Dynamics, 2006, 56, 513-524.	2.2	65

Hervé Giordani

#	Article	IF	CITATIONS
37	A Simplified 3D Oceanic Model Assimilating Geostrophic Currents: Application to the POMME Experiment. Journal of Physical Oceanography, 2005, 35, 628-644.	1.7	18
38	A 1 year sea surface heat budget in the northeastern Atlantic basin during the POMME experiment: 1. Flux estimates. Journal of Geophysical Research, 2005, 110, .	3.3	17
39	A 1 year sea surface heat budget in the northeastern Atlantic basin during the POMME experiment: 2. Flux optimization. Journal of Geophysical Research, 2005, 110, .	3.3	11
40	A high-resolution simulation of the ocean during the POMME experiment: Simulation results and comparison with observations. Journal of Geophysical Research, 2005, 110, .	3.3	23
41	A 1 year mesoscale simulation of the northeast Atlantic: Mixed layer heat and mass budgets during the POMME experiment. Journal of Geophysical Research, 2005, 110, .	3.3	23
42	Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. Journal of Geophysical Research, 2004, 109, .	3.3	43
43	Sensitivity of Cyclogenesis to Sea Surface Temperature in the Northwestern Atlantic. Monthly Weather Review, 2001, 129, 1273-1295.	1.4	50
44	Modeling and Analysis of Ageostrophic Circulation over the Azores Oceanic Front during the SEMAPHORE Experiment. Monthly Weather Review, 2000, 128, 2270-2287.	1.4	28
45	Surface fluxes in the North Atlantic current during CATCH/FASTEX. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 3563-3599.	2.7	40