
Penélope GarcÃ-a-Angulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/247343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Plant-Based Preparations to Protect Common Bean against Halo Blight Disease: The Potential of Nettle to Trigger the Immune System. Agronomy, 2022, 12, 63.	3.0	0
2	Perception and First Defense Responses Against <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> in <i>Phaseolus vulgaris</i> : Identification of Wall-Associated Kinase Receptors. Phytopathology, 2021, 111, 2332-2342.	2.2	4
3	Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. Plant Science, 2021, 307, 110882.	3.6	21
4	Immune Priming Triggers Cell Wall Remodeling and Increased Resistance to Halo Blight Disease in Common Bean. Plants, 2021, 10, 1514.	3.5	8
5	The role of cell wall phenolics during the early remodelling of cellulose-deficient maize cells. Phytochemistry, 2020, 170, 112219.	2.9	3
6	Effect of ancymidol on cell wall metabolism in growing maize cells. Planta, 2018, 247, 987-999.	3.2	1
7	Phenolic metabolism and molecular mass distribution of polysaccharides in celluloseâ€deficient maize cells. Journal of Integrative Plant Biology, 2017, 59, 475-495.	8.5	3
8	Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock. Carbohydrate Polymers, 2017, 175, 679-688.	10.2	28
9	Early habituation of maize (<i>Zea mays</i>) suspensionâ€cultured cells to 2,6â€dichlorobenzonitrile is associated with the enhancement of antioxidant status. Physiologia Plantarum, 2016, 157, 193-204.	5.2	5
10	Quinclorac-habituation of bean (Phaseolus vulgaris) cultured cells is related to an increase in their antioxidant capacity. Plant Physiology and Biochemistry, 2016, 107, 257-263.	5.8	4
11	The biosynthesis and wallâ€binding of hemicelluloses in celluloseâ€deficient maize cells: An example of metabolic plasticity. Journal of Integrative Plant Biology, 2015, 57, 373-387.	8.5	10
12	Monitoring of cell wall modifications during callogenesis in Stylosanthes guianensis (Fabaceae) under salt stress conditions. Revista Brasileira De Botanica, 2015, 38, 783-793.	1.3	2
13	Ectopic lignification in primary celluloseâ€deficient cell walls of maize cell suspension cultures. Journal of Integrative Plant Biology, 2015, 57, 357-372.	8.5	69
14	Early cell-wall modifications of maize cell cultures during habituation to dichlobenil. Journal of Plant Physiology, 2014, 171, 127-135.	3.5	14
15	Manganese transporter protein MntH is required for virulence ofXylophilus ampelinus, the causal agent of bacterial necrosis in grapevine. Australian Journal of Grape and Wine Research, 2014, 20, 442-450.	2.1	2
16	Purification and characterization of a soluble β-1,4-glucan from bean (PhaseolusÂvulgaris L.)-cultured cells dehabituated to dichlobenil. Planta, 2013, 237, 1475-1482.	3.2	2
17	Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus. Plant Science, 2013, 205-206, 111-120.	3.6	37
18	Cellulose Biosynthesis Inhibitors: Comparative Effect on Bean Cell Cultures. International Journal of Molecular Sciences, 2012, 13, 3685-3702.	4.1	20

#	Article	IF	CITATIONS
19	The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signaling and Behavior, 2011, 6, 1104-1110.	2.4	90
20	The phenolic profile of maize primary cell wall changes in cellulose-deficient cell cultures. Phytochemistry, 2010, 71, 1684-1689.	2.9	17
21	Plasticity of Xyloglucan Composition in Bean (Phaseolus vulgaris)-Cultured Cells during Habituation and Dehabituation to Lethal Concentrations of Dichlobenil. Molecular Plant, 2010, 3, 603-609.	8.3	10
22	Habituation and dehabituation to dichlobenil. Plant Signaling and Behavior, 2009, 4, 1069-1071.	2.4	3
23	Novel typeÂll cell wall architecture in dichlobenil-habituated maize calluses. Planta, 2009, 229, 617-631.	3.2	34
24	High peroxidase activity and stable changes in the cell wall are related to dichlobenil tolerance. Journal of Plant Physiology, 2009, 166, 1229-1240.	3.5	20
25	Habituation of Bean (Phaseolus vulgaris) Cell Cultures to Quinclorac and Analysis of the Subsequent Cell Wall Modifications. Annals of Botany, 2008, 101, 1329-1339.	2.9	8
26	Increase in XET activity in bean (Phaseolus vulgaris L.) cells habituated to dichlobenil. Planta, 2007, 226, 765-771.	3.2	6
27	Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil. Physiologia Plantarum, 2006, 127, 87-99.	5.2	25

FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50