Edward Foegeding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473245/publications.pdf

Version: 2024-02-01

53751 76872 5,804 95 45 citations h-index papers

74 g-index 97 97 97 4162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Foaming and sensory characteristics of protein-polyphenol particles in a food matrix. Food Hydrocolloids, 2022, 123, 107148.	5.6	15
2	Whey protein-polyphenol aggregate particles mitigate bar hardening reactions in high protein bars. LWT - Food Science and Technology, 2021, 138, 110747.	2.5	9
3	Viscosity drives texture perception of protein beverages more than hydrocolloid type. Journal of Texture Studies, 2020, 51, 78-91.	1.1	17
4	Improving the Solubility of Myofibrillar Proteins (MPs) by Mixing with Sodium Alginate: Effects of pH, Mixing Ratios and Preheating of MPs. Food Biophysics, 2020, 15, 113-121.	1.4	15
5	Starch-phenolic complexes are built on physical CH-Ï€ interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods. Food Chemistry, 2020, 308, 125577.	4.2	53
6	Morphological and masticatory performance variation of mouth behavior groups. Journal of Texture Studies, 2020, 51, 343-351.	1.1	2
7	Modulating Phenolic Bioaccessibility and Glycemic Response of Starch-Based Foods in Wistar Rats by Physical Complexation between Starch and Phenolic Acid. Journal of Agricultural and Food Chemistry, 2020, 68, 13257-13266.	2.4	16
8	Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science, 2020, 32, 90-102.	4.1	52
9	Formulation of protein–polyphenol particles for applications in food systems. Food and Function, 2020, 11, 5091-5104.	2.1	20
10	Sweetness perception in protein-polysaccharide beverages is not explained by viscosity or critical overlap concentration. Food Hydrocolloids, 2019, 94, 229-237.	5.6	13
11	Emulsion filled polysaccharide gels: Filler particle effects on material properties, oral processing, and sensory texture. Food Hydrocolloids, 2019, 94, 311-325.	5.6	37
12	Casein as a Modifier of Whey Protein Isolate Gel: Sensory Texture and Rheological Properties. Journal of Food Science, 2019, 84, 3399-3410.	1.5	3
13	Heat stability of whey protein ingredients based on state diagrams. International Dairy Journal, 2019, 91, 25-35.	1.5	5
14	Interactions Between Flavonoidâ€Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems. Journal of Food Science, 2018, 83, 1229-1236.	1.5	11
15	Reprint of â€~Protein-polyphenol particles for delivering structural and health functionality'. Food Hydrocolloids, 2018, 78, 15-25.	5.6	15
16	Surface energy and viscoelasticity influence caramel adhesiveness. Journal of Texture Studies, 2018, 49, 219-227.	1.1	11
17	Complexation with phenolic acids affect rheological properties and digestibility of potato starch and maize amylopectin. Food Hydrocolloids, 2018, 77, 843-852.	5.6	142
18	Impact of composition and texture of protein-added yogurts on oral activity. Food and Function, 2018, 9, 5443-5454.	2.1	8

#	Article	IF	Citations
19	Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocolloids, 2017, 72, 163-173.	5.6	89
20	A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement. Journal of Texture Studies, 2017, 48, 335-341.	1.1	23
21	Polyphenol-enriched berry extracts naturally modulate reactive proteins in model foods. Food and Function, 2017, 8, 4760-4767.	2.1	21
22	Phenolics from Whole Grain Oat Products as Modifiers of Starch Digestion and Intestinal Glucose Transport. Journal of Agricultural and Food Chemistry, 2017, 65, 6831-6839.	2.4	36
23	Moving from molecules, to structure, to texture perception. Food Hydrocolloids, 2017, 68, 31-42.	5.6	46
24	Whey protein–pectin soluble complexes for beverage applications. Food Hydrocolloids, 2017, 63, 130-138.	5.6	120
25	Designing foods for satiety: The roles of food structure and oral processing in satiation and satiety. Food Structure, 2017, 13, 1-12.	2.3	68
26	Caramel as a Model System for Evaluating the Roles of Mechanical Properties and Oral Processing on Sensory Perception of Texture. Journal of Food Science, 2016, 81, S736-44.	1.5	22
27	An ISOâ€Protein Model Food System for Evaluating Food Texture Effects. Journal of Texture Studies, 2016, 47, 377-391.	1.1	5
28	Designing Whey Protein–Polysaccharide Particles for Colloidal Stability. Annual Review of Food Science and Technology, 2016, 7, 93-116.	5.1	86
29	Comparison of jaw tracking by single video camera with 3D electromagnetic system. Journal of Food Engineering, 2016, 190, 22-33.	2.7	20
30	Phenolic recovery and bioaccessibility from milled and finished whole grain oat products. Food and Function, 2016, 7, 3370-3381.	2.1	29
31	Formation of whey protein–polyphenol meso-structures as a natural means of creating functional particles. Food and Function, 2016, 7, 1306-1318.	2.1	39
32	Food Protein Functionality—A New Model. Journal of Food Science, 2015, 80, C2670-7.	1.5	69
33	Transforming Structural Breakdown into Sensory Perception of Texture. Journal of Texture Studies, 2015, 46, 152-170.	1.1	44
34	Stability and immunogenicity of hypoallergenic peanut protein–polyphenol complexes during in vitro pepsin digestion. Food and Function, 2015, 6, 2145-2154.	2.1	41
35	Investigating the filled gel model in Cheddar cheese through use of Sephadex beads. Journal of Dairy Science, 2015, 98, 1502-1516.	1.4	17
36	Using State Diagrams for Predicting Colloidal Stability of Whey Protein Beverages. Journal of Agricultural and Food Chemistry, 2015, 63, 4335-4344.	2.4	22

#	Article	IF	CITATIONS
37	Formation of soluble whey protein aggregates and their stability in beverages. Food Hydrocolloids, 2015, 43, 265-274.	5 . 6	76
38	Adaptation of Oral Processing to the Fracture Properties of Soft Solids. Journal of Texture Studies, 2014, 45, 47-61.	1.1	59
39	Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Current Opinion in Colloid and Interface Science, 2013, 18, 324-333.	3.4	127
40	Use of Whey Protein Soluble Aggregates for Thermal Stabilityâ€"A Hypothesis Paper. Journal of Food Science, 2013, 78, R1105-15.	1.5	78
41	IMPACT OF SAMPLE THICKNESS ON DESCRIPTIVE TEXTURE ANALYSIS OF <scp>C</scp> HEDDAR CHEESE. Journal of Sensory Studies, 2012, 27, 286-293.	0.8	8
42	The effect of pH on gel structures produced using protein–polysaccharide phase separation and network inversion. International Dairy Journal, 2012, 27, 99-102.	1.5	18
43	Effects of Heating Rate and pH on Fracture and Waterâ€Holding Properties of Globular Protein Gels as Explained by Microâ€Phase Separation. Journal of Food Science, 2012, 77, E60-7.	1.5	18
44	EVALUATION OF TEXTURE CHANGES DUE TO COMPOSITIONAL DIFFERENCES USING ORAL PROCESSING. Journal of Texture Studies, 2012, 43, 257-267.	1.1	75
45	The effect of microstructure on the sensory perception and textural characteristics of whey protein $\hat{\mathbb{Q}}$ -carrageenan mixed gels. Food Hydrocolloids, 2012, 26, 33-43.	5 . 6	92
46	Interrelations among physical characteristics, sensory perception and oral processing of protein-based soft-solid structures. Food Hydrocolloids, 2012, 29, 234-245.	5.6	70
47	MODELING THE RHEOLOGICAL PROPERTIES OF CHEDDAR CHEESE WITH DIFFERENT FAT CONTENTS AT VARIOUS TEMPERATURES. Journal of Texture Studies, 2011, 42, 331-348.	1.1	41
48	A COMPREHENSIVE APPROACH TO UNDERSTANDING TEXTURAL PROPERTIES OF SEMI―AND SOFT‧OLID FOODS. Journal of Texture Studies, 2011, 42, 103-129.	1.1	119
49	Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocolloids, 2011, 25, 1538-1546.	5 . 6	152
50	The stability and physical properties of egg white and whey protein foams explained based on microstructure and interfacial properties. Food Hydrocolloids, 2011, 25, 1687-1701.	5.6	47
51	Food protein functionality: A comprehensive approach. Food Hydrocolloids, 2011, 25, 1853-1864.	5. 6	318
52	Effects of sucrose on egg white protein and whey protein isolate foams: Factors determining properties of wet and dry foams (cakes). Food Hydrocolloids, 2010, 24, 227-238.	5.6	119
53	Formation of Elastic Whey Protein Gels at Low pH by Acid Equilibration. Journal of Food Science, 2010, 75, E305-13.	1.5	6
54	Caseins: Utilizing Molecular Chaperone Properties to Control Protein Aggregation in Foods. Journal of Agricultural and Food Chemistry, 2010, 58, 685-693.	2.4	47

#	Article	IF	Citations
55	Using dairy ingredients to alter texture of foods: Implications based on oral processing considerations. International Dairy Journal, 2010, 20, 562-570.	1.5	48
56	Foams Prepared from Whey Protein Isolate and Egg White Protein: 2. Changes Associated with Angel Food Cake Functionality. Journal of Food Science, 2009, 74, E269-77.	1.5	55
57	Gelation. , 2009, , 29-91.		21
58	The Role of Copper in Protein Foams. Food Biophysics, 2008, 3, 255-260.	1.4	5
59	Effects of Caseins on Thermal Stability of Bovine \hat{I}^2 -Lactoglobulin. Journal of Agricultural and Food Chemistry, 2008, 56, 10352-10358.	2.4	45
60	Rheology and sensory texture of biopolymer gels. Current Opinion in Colloid and Interface Science, 2007, 12, 242-250.	3.4	90
61	Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Colloids and Surfaces B: Biointerfaces, 2007, 54, 200-210.	2.5	112
62	A proposed strain-hardening mechanism for alginate gels. Journal of Food Engineering, 2007, 80, 157-165.	2.7	45
63	POLYACRYLAMIDE GELS AS ELASTIC MODELS FOR FOOD GELS: FRACTURE PROPERTIES AFFECTED BY DEXTRAN AND GLYCEROL. Journal of Texture Studies, 2006, 37, 200-220.	1.1	9
64	SENSORY TEXTURE RELATED TO LARGE-STRAIN RHEOLOGICAL PROPERTIES OF AGAR/GLYCEROL GELS AS A MODEL FOOD. Journal of Texture Studies, 2006, 37, 241-262.	1.1	41
65	ANALYSIS OF COMPRESSION, TENSION AND TORSION FOR TESTING FOOD GEL FRACTURE PROPERTIES. Journal of Texture Studies, 2006, 37, 620-639.	1.1	45
66	Food Biophysics of Protein Gels: A Challenge of Nano and Macroscopic Proportions. Food Biophysics, 2006, 1, 41-50.	1.4	101
67	Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloids, 2006, 20, 184-195.	5.6	104
68	Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloids, 2006, 20, 196-203.	5.6	47
69	Factors determining the physical properties of protein foams. Food Hydrocolloids, 2006, 20, 284-292.	5.6	293
70	Fracture Analysis of Alginate Gels. Journal of Food Science, 2005, 70, e425-e431.	1.5	50
71	Characterization of polyacrylamide gels as an elastic model for food gels. Rheologica Acta, 2005, 44, 622-630.	1.1	50
72	Denaturation and Aggregation of Three \hat{l}_{\pm} -Lactalbumin Preparations at Neutral pH. Journal of Agricultural and Food Chemistry, 2005, 53, 3182-3190.	2.4	75

#	Article	IF	Citations
73	A comparison of drying operations on the rheological properties of whey protein thickening ingredients. International Journal of Food Science and Technology, 2004, 39, 1023-1031.	1.3	15
74	Electrostatic effects on the yield stress of whey protein isolate foams. Colloids and Surfaces B: Biointerfaces, 2004, 34, 13-23.	2.5	79
75	Rheological properties of fine-stranded whey protein isolate gels. Food Hydrocolloids, 2003, 17, 515-522.	5.6	20
76	DESCRIPTIVE ANALYSIS OF CARAMEL TEXTURE. Journal of Sensory Studies, 2003, 18, 277-289.	0.8	29
77	Sensory and mechanical aspects of cheese texture. International Dairy Journal, 2003, 13, 585-591.	1.5	112
78	Advances in modifying and understanding whey protein functionality. Trends in Food Science and Technology, 2002, 13, 151-159.	7.8	349
79	Properties of whey and egg white protein foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 204, 9-21.	2.3	69
80	Factors Determining Yield Stress and Overrun of Whey Protein Foams. Journal of Food Science, 2002, 67, 1677-1681.	1.5	36
81	ELECTROSTATIC EFFECTS ON PHYSICAL PROPERTIES OF PARTICULATE WHEY PROTEIN ISOLATE GELS. Journal of Texture Studies, 2001, 32, 285-305.	1.1	21
82	Rheological Characterization of a Gel Formed During Extensive Enzymatic Hydrolysis. Journal of Food Science, 2001, 66, 711-715.	1.5	85
83	Gelation properties of dispersions containing polymerized and native whey protein isolate. Food Hydrocolloids, 2001, 15, 165-175.	5.6	101
84	pH Induced Aggregation and Weak Gel Formation of Whey Protein Polymers. Journal of Food Science, 2000, 65, 139-143.	1.5	67
85	Isostrength Comparison of Large-Strain (Fracture) Rheological Properties of Egg White and Whey Protein Gels. Journal of Food Science, 1999, 64, 893-898.	1.5	26
86	Effects of lecithin on thermally induced whey protein isolate gels. Food Hydrocolloids, 1999, 13, 239-244.	5.6	44
87	Rheological Study on the Fractal Nature of the Protein Gel Structure. Langmuir, 1999, 15, 8584-8589.	1.6	187
88	Rheological Properties and Characterization of Polymerized Whey Protein Isolates. Journal of Agricultural and Food Chemistry, 1999, 47, 3649-3655.	2.4	97
89	Factors that determine the fracture properties and microstructure of globular protein gels. Food Hydrocolloids, 1995, 9, 237-249.	5.6	128
90	Whey protein gels: fracture stress and strain and related microstructural properties. Food Hydrocolloids, 1994, 8, 113-123.	5.6	35

#	Article	IF	CITATIONS
91	Polyacrylamide gels as elastic models for food gels. Food Hydrocolloids, 1994, 8, 125-134.	5.6	42
92	Interactions of .alphalactalbumin and bovine serum albumin with .betalactoglobulin in thermally induced gelation. Journal of Agricultural and Food Chemistry, 1993, 41, 341-346.	2.4	137
93	RHEOLOGICAL PROPERTIES OF WHEY PROTEIN ISOLATE GELS DETERMINED BY TORSIONAL FRACTURE AND STRESS RELAXATION. Journal of Texture Studies, 1992, 23, 337-348.	1.1	40
94	Mineral salt effects on whey protein gelation. Journal of Agricultural and Food Chemistry, 1991, 39, 1013-1016.	2.4	106
95	Factors Influencing Whey Protein Gel Rheology: Dialysis and Calcium Chelation. Journal of Food Science, 1991, 56, 789-791.	1.5	32