Fang-Jie Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473172/publications.pdf

Version: 2024-02-01

872 2385 45,896 368 117 198 citations h-index g-index papers 377 377 377 23164 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soil Contamination in China: Current Status and Mitigation Strategies. Environmental Science & Emp; Technology, 2015, 49, 750-759.	10.0	1,488
2	Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9931-9935.	7.1	1,202
3	Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies. Annual Review of Plant Biology, 2010, 61, 535-559.	18.7	1,023
4	Arsenic uptake and metabolism in plants. New Phytologist, 2009, 181, 777-794.	7.3	973
5	Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 2003, 14, 277-282.	6.6	908
6	Nanotechnology: A New Opportunity in Plant Sciences. Trends in Plant Science, 2016, 21, 699-712.	8.8	690
7	Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environmental Science & Environmental	10.0	673
8	Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212, 75-84.	3. 2	618
9	Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 2008, 178, 92-102.	7.3	593
10	Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environmental Science & Emp; Technology, 2008, 42, 5574-5579.	10.0	567
11	Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation. Plant Physiology, 2002, 130, 1552-1561.	4.8	548
12	Phytoremediation of Heavy Metal–Contaminated Soils: Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction. Journal of Environmental Quality, 2001, 30, 1919-1926.	2.0	493
13	Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 2009, 14, 436-442.	8.8	486
14	Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 2001, 232, 207-214.	3.7	455
15	A New Method to Measure Effective Soil Solution Concentration Predicts Copper Availability to Plants. Environmental Science &	10.0	435
16	Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 2001, 113, 111-120.	7.5	429
17	Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science, 2009, 49, 290-295.	3.7	423
18	Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 2014, 42, 443-467.	11.0	423

#	Article	IF	CITATIONS
19	Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249, 1038-1048.	7. 5	395
20	Function of Nutrients., 2012, , 191-248.		383
21	Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 2006, 65, 169-181.	1.0	378
22	Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology, 2008, 22, 315-324.	3.0	373
23	Title is missing!. Plant and Soil, 2003, 249, 37-43.	3.7	370
24	Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 2006, 142, 530-539.	7.5	365
25	Variation in Rice Cadmium Related to Human Exposure. Environmental Science & E	10.0	365
26	Arsenic hyperaccumulation by different fern species. New Phytologist, 2002, 156, 27-31.	7.3	361
27	Mitigation of Arsenic Accumulation in Rice with Water Management and Silicon Fertilization. Environmental Science & Environmen	10.0	356
28	Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 2000, 145, 11-20.	7.3	354
29	The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species Â. Plant Physiology, 2009, 150, 2071-2080.	4.8	350
30	Rapid reduction of arsenate in the medium mediated by plant roots. New Phytologist, 2007, 176, 590-599.	7.3	340
31	Sulphur Assimilation and Effects on Yield and Quality of Wheat. Journal of Cereal Science, 1999, 30, 1-17.	3.7	330
32	Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2002, 53, 535-543.	4.8	328
33	Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 2020, 446, 1-21.	3.7	327
34	Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany, 2001, 52, 2291-2300.	4.8	317
35	Methylated arsenic species in plants originate from soil microorganisms. New Phytologist, 2012, 193, 665-672.	7.3	312
36	Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment, 2000, 23, 507-514.	5.7	307

#	Article	IF	Citations
37	Research Priorities for Conservation of Metallophyte Biodiversity and their Potential for Restoration and Site Remediation. Restoration Ecology, 2004, 12, 106-116.	2.9	304
38	Investigating the Contribution of the Phosphate Transport Pathway to Arsenic Accumulation in Rice \hat{A} . Plant Physiology, 2011, 157, 498-508.	4.8	299
39	In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 2002, 118, 435-443.	7.5	297
40	Influence of Iron Status on Cadmium and Zinc Uptake by Different Ecotypes of the Hyperaccumulator Thlaspi caerulescens. Plant Physiology, 2002, 128, 1359-1367.	4.8	293
41	Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science, 2018, 69, 181-195.	3.9	291
42	Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICPâ€AES). Communications in Soil Science and Plant Analysis, 1994, 25, 407-418.	1.4	288
43	Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 2002, 156, 195-203.	7.3	285
44	Biofortification and phytoremediation. Current Opinion in Plant Biology, 2009, 12, 373-380.	7.1	277
45	Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant and Soil, 2010, 328, 27-34.	3.7	277
46	Methylated Arsenic Species in Rice: Geographical Variation, Origin, and Uptake Mechanisms. Environmental Science & Environment	10.0	276
47	Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006, 141, 115-125.	7.5	268
48	Title is missing!. Plant and Soil, 1997, 188, 153-159.	3.7	259
49	Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell and Environment, 1997, 20, 898-906.	5.7	257
50	Physiological evidence for a highâ€affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist, 2001, 149, 53-60.	7.3	254
51	Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil, 2010, 332, 5-18.	3.7	242
52	Iron–Manganese (Oxyhydro)oxides, Rather than Oxidation of Sulfides, Determine Mobilization of Cd during Soil Drainage in Paddy Soil Systems. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	236
53	The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist, 2003, 159, 403-410.	7.3	231
54	Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Science of the Total Environment, 2018, 639, 271-277.	8.0	231

#	Article	IF	CITATIONS
55	The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany, 2011, 62, 4391-4398.	4.8	229
56	Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
57	Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants. PLoS Biology, 2014, 12, e1002009.	5.6	227
58	A Terrestrial Biotic Ligand Model. 1. Development and Application to Cu and Ni Toxicities to Barley Root Elongation in Soils. Environmental Science & Elongation in Soils.	10.0	224
59	Isotopic discrimination of zinc in higher plants. New Phytologist, 2005, 165, 703-710.	7. 3	219
60	Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties. Journal of Environmental Quality, 2004, 33, 532-541.	2.0	218
61	Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta, 2005, 220, 731-736.	3.2	217
62	Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist, 2006, 172, 646-654.	7.3	212
63	Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 2007, 147, 743-749.	7. 5	212
64	OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014, 65, 4849-4861.	4.8	211
65	Title is missing!. Plant and Soil, 1997, 197, 71-78.	3.7	210
66	Complexation of Arsenite with Phytochelatins Reduces Arsenite Efflux and Translocation from Roots to Shoots in Arabidopsis. Plant Physiology, 2010, 152, 2211-2221.	4.8	206
67	OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation. Plant Physiology, 2016, 172, 1708-1719.	4.8	200
68	Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 2007, 46, 282-292.	3.7	196
69	The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytologist, 2010, 186, 392-399.	7.3	196
70	Diversity and Abundance of Arsenic Biotransformation Genes in Paddy Soils from Southern China. Environmental Science & Environ	10.0	195
71	Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator <i>Sedum plumbizincicola</i> . New Phytologist, 2017, 215, 687-698.	7.3	191
72	<scp>OsNRAMP1 /scp> transporter contributes to cadmium and manganese uptake in rice. Plant, Cell and Environment, 2020, 43, 2476-2491.</scp>	5.7	191

#	Article	IF	CITATIONS
73	Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 2004, 128, 307-315.	7.5	175
74	Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (<i>Brassica napus</i>). Journal of Agricultural Science, 1996, 126, 53-62.	1.3	174
75	Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytologist, 2001, 151, 613-620.	7.3	174
76	Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 2018, 207, 699-707.	8.2	170
77	A lossâ€ofâ€function allele of <i>OsHMA3</i> associated with high cadmium accumulation in shoots and grain of <i>Japonica</i> rice cultivars. Plant, Cell and Environment, 2016, 39, 1941-1954.	5.7	168
78	Distribution of Sulfur within Oilseed Rape Leaves in Response to Sulfur Deficiency during Vegetative Growth. Plant Physiology, 1998, 118, 1337-1344.	4.8	167
79	Mutation in Nicotianamine Aminotransferase Stimulated the Fe(II) Acquisition System and Led to Iron Accumulation in Rice. Plant Physiology, 2007, 145, 1647-1657.	4.8	167
80	Mineral Availability as a Key Regulator of Soil Carbon Storage. Environmental Science & Emp; Technology, 2017, 51, 4960-4969.	10.0	167
81	Arsenic Methylation in Soils and Its Relationship with Microbial <i>arsM</i> Abundance and Diversity, and As Speciation in Rice. Environmental Science & Environmental Science	10.0	166
82	Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environmental Pollution, 2016, 219, 182-190.	7.5	166
83	Terrestrial Biotic Ligand Model. 2. Application to Ni and Cu Toxicities to Plants, Invertebrates, and Microbes in Soil. Environmental Science & Eamp; Technology, 2006, 40, 7094-7100.	10.0	164
84	Genome-Wide Association Studies Reveal the Genetic Basis of Ionomic Variation in Rice. Plant Cell, 2018, 30, 2720-2740.	6.6	164
85	Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator <i>Pteris vittata</i> . New Phytologist, 2008, 180, 434-441.	7.3	161
86	SOIL FACTORS CONTROLLING THE EXPRESSION OF COPPER TOXICITY TO PLANTS IN A WIDE RANGE OF EUROPEAN SOILS. Environmental Toxicology and Chemistry, 2006, 25, 726.	4.3	159
87	The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. Journal of Experimental Botany, 2016, 67, 6051-6059.	4.8	158
88	Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Management, 2017, 64, 333-339.	7.4	158
89	Characterization of Cd Translocation and Identification of the Cd Form in Xylem Sap of the Cd-Hyperaccumulator Arabidopsis halleri. Plant and Cell Physiology, 2008, 49, 540-548.	3.1	157
90	Combined NanoSIMS and synchrotron Xâ€ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytologist, 2014, 201, 104-115.	7.3	157

#	Article	IF	Citations
91	OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist, 2017, 215, 1090-1101.	7.3	156
92	Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh. Environmental Science & Environmental	10.0	151
93	Influence of Sulfur Deficiency on the Expression of Specific Sulfate Transporters and the Distribution of Sulfur, Selenium, and Molybdenum in Wheat. Plant Physiology, 2010, 153, 327-336.	4.8	151
94	Copper Speciation and Impacts on Bacterial Biosensors in the Pore Water of Copper-Contaminated Soils. Environmental Science &	10.0	150
95	Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environmental Pollution, 2007, 145, 596-605.	7.5	150
96	Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018, 238, 482-490.	7.5	148
97	Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India. Environmental Science & Environmental	10.0	146
98	Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environmental Pollution, 2017, 231, 37-47.	7.5	145
99	In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118, 445-452.	7.5	143
100	Arsenic Bioavailability to Rice Is Elevated in Bangladeshi Paddy Soils. Environmental Science & Elevated in Bangladeshi Paddy Soils. Environmental Science & Elevated in Bangladeshi Paddy Soils. Environmental Science & Elevated in Bangladeshi Paddy Soils.	10.0	139
101	Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). Journal of the Science of Food and Agriculture, 1993, 63, 29-37.	3.5	138
102	Imaging element distribution and speciation in plant cells. Trends in Plant Science, 2014, 19, 183-192.	8.8	138
103	Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytologist, 2003, 158, 279-285.	7.3	135
104	Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 318, 205-215.	3.7	131
105	Pathways and Relative Contributions to Arsenic Volatilization from Rice Plants and Paddy Soil. Environmental Science & Environ	10.0	131
106	Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. Analytical and Bioanalytical Chemistry, 2012, 402, 3263-3273.	3.7	131
107	Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular Plant, 2022, 15, 27-44.	8.3	131
108	Longâ€Term Changes in the Extractability and Bioavailability of Zinc and Cadmium after Sludge Application. Journal of Environmental Quality, 2000, 29, 875-883.	2.0	129

#	Article	IF	Citations
109	Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environmental Pollution, 2006, 139, 167-175.	7.5	127
110	Arsenite transport in plants. Cellular and Molecular Life Sciences, 2009, 66, 2329-2339.	5.4	127
111	Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 2009, 75, 979-986.	8.2	127
112	Extractable sulphate and organic sulphur in soils and their availability to plants. Plant and Soil, 1994, 164, 243-250.	3.7	126
113	NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytologist, 2010, 185, 434-445.	7.3	126
114	Variation in grain arsenic assessed in a diverse panel of rice (<i>Oryza sativa</i>) grown in multiple sites. New Phytologist, 2012, 193, 650-664.	7.3	126
115	Genotypic and Environmental Variations in Grain Cadmium and Arsenic Concentrations Among a Panel of High Yielding Rice Cultivars. Rice, 2017, 10, 9.	4.0	124
116	High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots Â. Plant Physiology, 2011, 156, 913-924.	4.8	122
117	Decreasing arsenic accumulation in rice by overexpressing <i>Os<scp>NIP</scp>1;1</i> and <i>Os<scp>NIP</scp>3;3</i> through disrupting arsenite radial transport in roots. New Phytologist, 2018, 219, 641-653.	7.3	122
118	Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. ISME Journal, 2019, 13, 2523-2535.	9.8	122
119	Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytologist, 2011, 189, 200-209.	7.3	121
120	Anaerobic Arsenite Oxidation by an Autotrophic Arsenite-Oxidizing Bacterium from an Arsenic-Contaminated Paddy Soil. Environmental Science & Environme	10.0	121
121	Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2007, 58, 1717-1728.	4.8	119
122	Selenium Speciation in Soil and Rice: Influence of Water Management and Se Fertilization. Journal of Agricultural and Food Chemistry, 2010, 58, 11837-11843.	5.2	118
123	Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution, 2018, 236, 598-608.	7.5	118
124	Arsenic uptake and speciation in the rootless duckweed <i>Wolffia globosa</i> . New Phytologist, 2009, 182, 421-428.	7.3	111
125	Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant and Soil, 2018, 433, 377-389.	3.7	111
126	Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chemistry, 2011, 126, 1771-1778.	8.2	110

#	Article	IF	Citations
127	Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International, 2019, 126, 619-626.	10.0	110
128	Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant, Cell and Environment, 2010, 33, 370-381.	5.7	107
129	Evidence of low selenium concentrations in UK bread-making wheat grain. Journal of the Science of Food and Agriculture, 2002, 82, 1160-1165.	3.5	106
130	Arsenic Speciation in Phloem and Xylem Exudates of Castor Bean. Plant Physiology, 2010, 154, 1505-1513.	4.8	104
131	Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environmental Pollution, 2014, 194, 217-223.	7.5	104
132	Scale and causes of lead contamination in Chinese tea. Environmental Pollution, 2006, 139, 125-132.	7.5	102
133	The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany, 2015, 66, 3717-3724.	4.8	99
134	Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environmental Pollution, 2004, 132, 113-120.	7.5	98
135	Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 2011, 159, 3739-3743.	7.5	98
136	Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biology and Biochemistry, 2018, 122, 111-119.	8.8	98
137	Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. Environmental Science & Environmental Sc	10.0	97
138	OsATX1 Interacts with Heavy Metal P1B-Type ATPases and Affects Copper Transport and Distribution. Plant Physiology, 2018, 178, 329-344.	4.8	96
139	Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (brassica napus l). Journal of the Science of Food and Agriculture, 1994, 64, 295-304.	3.5	95
140	Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta, 2005, 221, 928-936.	3.2	95
141	Measurement of zinc stable isotope ratios in biogeochemical matrices by double-spike MC-ICPMS and determination of the isotope ratio pool available for plants from soil. Analytical and Bioanalytical Chemistry, 2010, 398, 3115-3125.	3.7	95
142	The dynamics of arsenic in four paddy fields in the Bengal delta. Environmental Pollution, 2011, 159, 947-953.	7.5	95
143	Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils. Environmental Science & Envi	10.0	95
144	Variation in the Breadmaking Quality and Rheological Properties of Wheat in Relation to Sulphur Nutrition under Field Conditions. Journal of Cereal Science, 1999, 30, 19-31.	3.7	93

#	Article	IF	CITATIONS
145	Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytologist, 2005, 165, 755-761.	7.3	92
146	Arsenic & Rice., 2012,,.		92
147	Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environmental Pollution, 2008, 156, 905-914.	7.5	91
148	Title is missing!. Plant and Soil, 2000, 225, 95-107.	3.7	90
149	Variation in rootâ€toâ€shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators <i>Thlaspi caerulescens </i> and <i>Thlaspi praecox</i> . New Phytologist, 2008, 178, 315-325.	7.3	90
150	Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. Journal of Hazardous Materials, 2017, 322, 292-300.	12.4	90
151	Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 2008, 156, 1149-1155.	7.5	89
152	A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use and Management, 1995, 11, 110-114.	4.9	87
153	Arsenateâ€induced toxicity: Effects on antioxidative enzymes and DNA damage in ⟨i⟩Vicia faba⟨ i⟩. Environmental Toxicology and Chemistry, 2008, 27, 413-419.	4.3	86
154	Accumulation, Distribution, and Speciation of Arsenic in Wheat Grain. Environmental Science & Emp; Technology, 2010, 44, 5464-5468.	10.0	86
155	Efficient Arsenic Methylation and Volatilization Mediated by a Novel Bacterium from an Arsenic-Contaminated Paddy Soil. Environmental Science & Eamp; Technology, 2016, 50, 6389-6396.	10.0	86
156	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano, 2017, 4, 448-460.	4.3	85
157	Comparison of <i>aqua regia</i> digestion with sodium carbonate fusion for the determination of total phosphorus in soils by inductively coupled plasma atomic emission spectroscopy (ICP). Communications in Soil Science and Plant Analysis, 1995, 26, 1357-1368.	1.4	84
158	Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips () Tj ETQq0 0 0 rg	gBT lOverlo	ock 10 Tf 50 2
159	Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens?. Chemosphere, 2008, 71, 1276-1283.	8.2	84
160	Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 2010, 332, 19-30.	3.7	84
161	Arsenic Methylation and Volatilization by Arsenite <i>S</i> -Adenosylmethionine Methyltransferase in Pseudomonas alcaligenes NBRC14159. Applied and Environmental Microbiology, 2015, 81, 2852-2860.	3.1	84
162	The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. Journal of Experimental Botany, 2017, 68, 3007-3016.	4.8	84

#	Article	IF	Citations
163	COMPARISON OF SOIL SOLUTION SPECIATION AND DIFFUSIVE GRADIENTS IN THIN-FILMS MEASUREMENT AS AN INDICATOR OF COPPER BIOAVAILABILITY TO PLANTS. Environmental Toxicology and Chemistry, 2006, 25, 733.	4.3	83
164	Responses of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency. Plant and Soil, 1996, 181, 317-327.	3.7	80
165	INFLUENCE OF SOIL PROPERTIES AND AGING ON ARSENIC PHYTOTOXICITY. Environmental Toxicology and Chemistry, 2006, 25, 1663.	4.3	80
166	Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environmental Pollution, 2007, 148, 221-229.	7.5	80
167	Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant and Soil, 2015, 387, 323-336.	3.7	7 9
168	Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant and Soil, 2013, 366, 647-658.	3.7	78
169	Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the Total Environment, 2014, 485-486, 428-434.	8.0	78
170	Sulphur speciation and turnover in soils: evidence from sulphur K-edge XANES spectroscopy and isotope dilution studies. Soil Biology and Biochemistry, 2006, 38, 1000-1007.	8.8	75
171	Assessing the Labile Arsenic Pool in Contaminated Paddy Soils by Isotopic Dilution Techniques and Simple Extractions. Environmental Science & Environm	10.0	75
172	Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environmental and Experimental Botany, 2011, 71, 416-416.	4.2	75
173	OsCLT1, a CRTâ€like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytologist, 2016, 211, 658-670.	7.3	75
174	Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Journal of Experimental Botany, 2020, 71, 5705-5715.	4.8	75
175	Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant and Soil, 2014, 376, 423-431.	3.7	73
176	Natural variation in the promoter of <i>OsHMA3</i> contributes to differential grain cadmium accumulation between <i>Indica</i> and <i>Japonica</i> rice. Journal of Integrative Plant Biology, 2020, 62, 314-329.	8.5	72
177	Overexpression of Rice <i>OsHMA3</i> in Wheat Greatly Decreases Cadmium Accumulation in Wheat Grains. Environmental Science &	10.0	72
178	Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil, 2010, 332, 31-40.	3.7	70
179	Beneficial Elements. , 2012, , 249-269.		70
180	Use of Synchrotron-Based Techniques to Elucidate Metal Uptake and Metabolism in Plants. Advances in Agronomy, 2013, , 1-82.	5.2	70

#	Article	IF	CITATIONS
181	Distribution and Speciation of Iron and Zinc in Grain of Two Wheat Genotypes. Journal of Agricultural and Food Chemistry, 2014, 62, 708-716.	5.2	70
182	Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste. Applied and Environmental Microbiology, 2015, 81, 6718-6724.	3.1	68
183	Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Environmental Pollution, 2019, 247, 736-744.	7.5	68
184	Heterologous expression of the yeast arsenite efflux system ACR3 improves <i>Arabidopsis thaliana</i> tolerance to arsenic stress. New Phytologist, 2012, 194, 716-723.	7. 3	66
185	Arsenic translocation in rice investigated using radioactive 73As tracer. Plant and Soil, 2012, 350, 413-420.	3.7	66
186	Coâ€segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytologist, 2004, 163, 299-312.	7. 3	65
187	Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biology and Biochemistry, 2011, 43, 932-941.	8.8	65
188	OsPTR7 (OsNPF8.1), a Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice Grain. Plant and Cell Physiology, 2017, 58, 904-913.	3.1	65
189	Recent developments in modifying crops and agronomic practice to improve human health. Food Policy, 2011, 36, S94-S101.	6.0	64
190	Free Radicals Produced from the Oxidation of Ferrous Sulfides Promote the Remobilization of Cadmium in Paddy Soils During Drainage. Environmental Science & Environmental Science & 2021, 55, 9845-9853.	10.0	63
191	Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant, Cell and Environment, 2006, 29, 1422-1429.	5.7	62
192	Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Science of the Total Environment, 2007, 372, 433-439.	8.0	62
193	Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties. Journal of Environmental Quality, 2004, 33, 532.	2.0	62
194	Predicting molybdenum toxicity to higher plants: Influence of soil properties. Environmental Pollution, 2010, 158, 3095-3102.	7.5	61
195	Distinguishing Diffusional and Plant Control of Cd and Ni Uptake by Hyperaccumulator and Nonhyperaccumulator Plants. Environmental Science & Environme	10.0	61
196	OsWRKY28 Regulates Phosphate and Arsenate Accumulation, Root System Architecture and Fertility in Rice. Frontiers in Plant Science, 2018, 9, 1330.	3.6	61
197	Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental Pollution, 2019, 251, 952-960.	7. 5	61
198	Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values. Environmental Pollution, 2010, 158, 3085-3094.	7.5	60

#	Article	IF	CITATIONS
199	Adaptation to acidic soil is achieved by increased numbers of ⟨i⟩cis⟨ i⟩â€acting elements regulating ⟨scp⟩⟨i⟩ALMT1⟨ i⟩⟨ scp⟩ expression in ⟨i⟩⟨ scp⟩ dcus lanatus⟨ i⟩. Plant Journal, 2013, 76, 10-23.	5.7	60
200	Iron Bioavailability in Two Commercial Cultivars of Wheat: Comparison between Wholegrain and White Flour and the Effects of Nicotianamine and 2′-Deoxymugineic Acid on Iron Uptake into Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2014, 62, 10320-10325.	5.2	60
201	Factors affecting the concentrations of lead in British wheat and barley grain. Environmental Pollution, 2004, 131, 461-468.	7.5	59
202	Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 2012, 55, 183-187.	3.7	59
203	Historical arsenic contamination of soil due to long-term phosphate fertiliser applications. Environmental Pollution, 2013, 180, 259-264.	7.5	59
204	The Voltaic Effect as a Novel Mechanism Controlling the Remobilization of Cadmium in Paddy Soils during Drainage. Environmental Science & Environmenta	10.0	59
205	Speciation and solubility of Cu, Ni and Pb in contaminated soils. European Journal of Soil Science, 2004, 55, 579-590.	3.9	57
206	Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. Journal of Experimental Botany, 2019, 70, 2857-2871.	4.8	57
207	Sulphur accumulation and redistribution in wheat (Triticum aestivum): a study using stable sulphur isotope ratios as a tracer system. Plant, Cell and Environment, 1999, 22, 831-839.	5.7	56
208	Long-term effects of land use and fertiliser treatments on sulphur transformations in soils from the Broadbalk experiment. Soil Biology and Biochemistry, 2001, 33, 1797-1804.	8.8	56
209	Dissecting the components controlling rootâ€toâ€shoot arsenic translocation in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 206-218.	7.3	56
210	Effects of sulphur nutrition on growth and nitrogen fixation of pea (Pisum sativum L.). Plant and Soil, 1999, 212, 207-217.	3.7	55
211	Longâ€Term Effects of Land Use and Fertilizer Treatments on Sulfur Cycling. Journal of Environmental Quality, 2000, 29, 1867-1874.	2.0	55
212	The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environmental Pollution, 2020, 261, 114151.	7.5	55
213	Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environmental and Experimental Botany, 2009, 66, 479-486.	4.2	54
214	Arsenic Shoot-Grain Relationships in Field Grown Rice Cultivars. Environmental Science & Emp; Technology, 2010, 44, 1471-1477.	10.0	54
215	Arsenite efflux is not enhanced in the arsenateâ€tolerant phenotype of <i>Holcus lanatus</i> . New Phytologist, 2009, 183, 340-348.	7.3	53
216	Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Environmental Pollution, 2015, 206, 560-566.	7.5	52

#	Article	IF	Citations
217	Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 1998, 21, 108-114.	5.7	51
218	Identification and functional analysis of two ZIP metal transporters of the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 325, 79-95.	3.7	51
219	The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology, 2021, 51, 2449-2484.	12.8	51
220	Effects of Nitrogen on the Distribution and Chemical Speciation of Iron and Zinc in Pearling Fractions of Wheat Grain. Journal of Agricultural and Food Chemistry, 2014, 62, 4738-4746.	5.2	50
221	Sulphur fractionation in calcareous soils and bioavailability to plants. Plant and Soil, 2005, 268, 103-109.	3.7	49
222	SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator <scp><i>Sedum plumbizincicola</i></scp> . Plant, Cell and Environment, 2019, 42, 1112-1124.	5.7	49
223	Nitrogen to sulphur ratio in rapeseed and in rapeseed protein and its use in diagnosing sulphur deficiency. Journal of Plant Nutrition, 1997, 20, 549-558.	1.9	48
224	Responses of breadmaking quality to sulphur in three wheat varieties. Journal of the Science of Food and Agriculture, 1999, 79, 1865-1874.	3.5	48
225	Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC Plant Biology, 2015, 15, 16.	3.6	48
226	Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant and Soil, 2017, 416, 259-269.	3.7	48
227	Engineering Crops without Genome Integration Using Nanotechnology. Trends in Plant Science, 2019, 24, 574-577.	8.8	48
228	The C-type ATP-Binding Cassette Transporter OsABCC7 Is Involved in the Root-to-Shoot Translocation of Arsenic in Rice. Plant and Cell Physiology, 2019, 60, 1525-1535.	3.1	48
229	A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nature Communications, 2021, 12, 1392.	12.8	48
230	Sulphur nutrition: An important factor for the quality of wheat and rapeseed. Soil Science and Plant Nutrition, 1997, 43, 1137-1142.	1.9	47
231	Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environmental Pollution, 2012, 165, 18-24.	7.5	47
232	Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in Arabidopsis thaliana. Plant and Soil, 2016, 401, 243-257.	3.7	47
233	The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environmental Pollution, 2022, 293, 118497.	7.5	47
234	The shift of the microbial community in activated sludge with calcium treatment and its implication to sludge settleability. Bioresource Technology, 2016, 207, 11-18.	9.6	46

#	Article	IF	CITATIONS
235	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environmental Science & Environmental Sc	10.0	46
236	Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 2020, 398, 123096.	12.4	46
237	The Cadmium Content of British Wheat Grain. Journal of Environmental Quality, 1995, 24, 850-855.	2.0	45
238	Use of Sulfur Isotope Ratios To Determine Anthropogenic Sulfur Signals in a Grassland Ecosystem. Environmental Science & Envir	10.0	45
239	Trends in 13C/12C ratios and C isotope discrimination of wheat since 1845. Oecologia, 2001, 128, 336-342.	2.0	45
240	Effects of sulphur on yield and malting quality of barley. Journal of Cereal Science, 2006, 43, 369-377.	3.7	45
241	Mutation in <i>OsCADT1</i> enhances cadmium tolerance and enriches selenium in rice grain. New Phytologist, 2020, 226, 838-850.	7. 3	45
242	Stable Sulfur Isotope Ratio Indicates Longâ€Term Changes in Sulfur Deposition in the Broadbalk Experiment since 1845. Journal of Environmental Quality, 2003, 32, 33-39.	2.0	44
243	Historical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160Âyears. Science of the Total Environment, 2008, 389, 532-538.	8.0	44
244	Atmospheric SO ₂ Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils. Environmental Science & Extracts of Soils. Environmental Science & Extracts of Soils.	10.0	44
245	Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. New Phytologist, 2019, 221, 1983-1997.	7. 3	44
246	Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nature Food, 2020, 1, 489-499.	14.0	44
247	DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
248	The influence of spring nitrogen on yield, yield components and glucosinolate content of autumn-sown oilseed rape (Brassica napus). Journal of Agricultural Science, 1993, 120, 219-224.	1.3	43
249	POLLUTION-INDUCED COMMUNITY TOLERANCE OF SOIL MICROBES IN RESPONSE TO A ZINC GRADIENT. Environmental Toxicology and Chemistry, 2004, 23, 2665.	4.3	43
250	Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils. Environmental Pollution, 2008, 156, 883-890.	7.5	43
251	Aluminium alleviates fluoride toxicity in tea (Camellia sinensis). Plant and Soil, 2016, 402, 179-190.	3.7	42
252	Arsenic methylation by a novel ArsM As(III) <i>S</i> èâdenosylmethionine methyltransferase that requires only two conserved cysteine residues. Molecular Microbiology, 2018, 107, 265-276.	2.5	42

#	Article	IF	Citations
253	Allelic Variation of NtNramp5 Associated with Cultivar Variation in Cadmium Accumulation in Tobacco. Plant and Cell Physiology, 2017, 58, 1583-1593.	3.1	41
254	High-Affinity Sulfate Transporter Sultr1;2 Is a Major Transporter for Cr(VI) Uptake in Plants. Environmental Science & Environ	10.0	41
255	Sulphur uptake and distribution in double and single low varieties of oilseed rape (Brassica napus L.). Plant and Soil, 1993, 150, 69-76.	3.7	40
256	Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations. PLoS ONE, 2017, 12, e0176696.	2.5	40
257	Dimethylarsinic acid is the causal agent inducing rice straighthead disease. Journal of Experimental Botany, 2020, 71, 5631-5644.	4.8	40
258	Arsenic Methylation in <i>Arabidopsis thaliana</i> Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity. Journal of Agricultural and Food Chemistry, 2016, 64, 2674-2681.	5.2	39
259	Risk of Silver Transfer from Soil to the Food Chain Is Low after Long-Term (20 Years) Field Applications of Sewage Sludge. Environmental Science & Env	10.0	39
260	The role of root hairs in cadmium acquisition by barley. Environmental Pollution, 2011, 159, 408-415.	7.5	38
261	Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils. Soil Biology and Biochemistry, 2021, 154, 108129.	8.8	38
262	What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition. Plant and Soil, 2022 , 476 , $11-23$.	3.7	38
263	Changes in the sulphur status of British wheat grain in the last decade, and its geographical distribution. Journal of the Science of Food and Agriculture, 1995, 68, 507-514.	3.5	37
264	Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils. Comptes Rendus - Geoscience, 2015, 347, 397-404.	1.2	37
265	Dietary cadmium exposure, risks to human health and mitigation strategies. Critical Reviews in Environmental Science and Technology, 2023, 53, 939-963.	12.8	37
266	Floral, climatic and soil pH controls on leaf ash content in China's terrestrial plants. Global Ecology and Biogeography, 2012, 21, 376-382.	5.8	36
267	Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables. Journal of Experimental Botany, 2019, 70, 5865-5878.	4.8	36
268	What's new about cadmium hyperaccumulation?. New Phytologist, 2001, 149, 2-3.	7.3	35
269	Critical Loads of Metals and Other Trace Elements to Terrestrial Environments. Environmental Science &	10.0	35
270	Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria. Environmental Pollution, 2020, 263, 114561.	7.5	35

#	Article	IF	Citations
271	Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O.) Tj ETQq1	1 0.784314 rş	gBŢ/Overloc
272	Knocking Out ACR2 Does Not Affect Arsenic Redox Status in Arabidopsis thaliana: Implications for As Detoxification and Accumulation in Plants. PLoS ONE, 2012, 7, e42408.	2.5	34
273	Localized Intensification of Arsenic Release within the Emergent Rice Rhizosphere. Environmental Science &	10.0	34
274	Predicting Cadmium Safety Thresholds in Soils Based on Cadmium Uptake by Chinese Cabbage. Pedosphere, 2017, 27, 475-481.	4.0	33
275	Nitrite Accumulation Is Required for Microbial Anaerobic Iron Oxidation, but Not for Arsenite Oxidation, in Two Heterotrophic Denitrifiers. Environmental Science & Environmen	10.0	33
276	Phylogenomics reveals the basis of adaptation of Pseudorhizobium species to extreme environments and supports a taxonomic revision of the genus. Systematic and Applied Microbiology, 2021, 44, 126165.	2.8	33
277	Selenium speciation in soil extracts using LC-ICP-MS. International Journal of Environmental Analytical Chemistry, 2012, 92, 222-236.	3.3	32
278	Using plant analysis to predict yield losses caused by sulphur deficiency. Annals of Applied Biology, 2001, 138, 123-127.	2.5	31
279	Sulphur nutrition differentially affects the distribution of asparagine in wheat grain. Journal of Cereal Science, 2009, 50, 407-409.	3.7	31
280	Cadmium Phytoremediation: Call Rice CAL1. Molecular Plant, 2018, 11, 640-642.	8.3	31
281	Arsenic Influence on Genetic Variation in Grain Trace-Element Nutrient Content in Bengal Delta Grown Rice. Environmental Science & Environmental Scien	10.0	29
282	Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. Environmental Pollution, 2019, 247, 482-487.	7.5	28
283	Epigenetic regulation of sulfur homeostasis in plants. Journal of Experimental Botany, 2019, 70, 4171-4182.	4.8	28
284	Stable isotope fractionation of cadmium in the soil-rice-human continuum. Science of the Total Environment, 2021, 761, 143262.	8.0	28
285	Cadmium speciation and release kinetics in a paddy soil as affected by soil amendments and flooding-draining cycle. Environmental Pollution, 2021, 268, 115944.	7.5	27
286	Role of Sulfur for Plant Production in Agricultural and Natural Ecosystems. Advances in Photosynthesis and Respiration, 2008, , 417-435.	1.0	27
287	Widespread Occurrence of the Highly Toxic Dimethylated Monothioarsenate (DMMTA) in Rice Globally. Environmental Science & Envi	10.0	27
288	Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant. Plant and Soil, 2013, 372, 125-136.	3.7	26

#	Article	IF	Citations
289	Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environmental Microbiology, 2022, 24, 752-761.	3.8	26
290	Thiosulphate and tetrathionate oxidation in arable soils. Soil Biology and Biochemistry, 1998, 30, 553-559.	8.8	25
291	Contrasting effects of dwarfing alleles and nitrogen availability on mineral concentrations in wheat grain. Plant and Soil, 2012, 360, 93-107.	3.7	25
292	Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. Environmental Science: Nano, 2018, 5, 2531-2544.	4.3	25
293	Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils. Chemosphere, 2021, 267, 128893.	8.2	25
294	Dynamics of Dimethylated Monothioarsenate (DMMTA) in Paddy Soils and Its Accumulation in Rice Grains. Environmental Science &	10.0	25
295	Molybdenum: <i>Mo</i> re than an essential element. Journal of Experimental Botany, 2022, 73, 1766-1774.	4.8	25
296	Sulphur turnover in the developing pods of single and double low varieties of oilseed rape (Brassica) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf !
297	Development of a Real-Time PCR Assay for Detection and Quantification of Rhizobium leguminosarum Bacteria and Discrimination between Different Biovars in Zinc-Contaminated Soil. Applied and Environmental Microbiology, 2011, 77, 4626-4633.	3.1	24
298	Determining the fate of selenium in wheat biofortification: an isotopically labelled field trial study. Plant and Soil, 2017, 420, 61-77.	3.7	24
299	Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192, 414-427.	7. 3	23
300	Correction for protein content in the determination of the glucosinolate content of rapeseed by the X-RF method. Journal of the Science of Food and Agriculture, 1992, 58, 431-433.	3.5	22
301	Distribution of the stable isotopes 57Fe and 68Zn in grain tissues of various wheat lines differing in their phytate content. Plant and Soil, 2015, 396, 73-83.	3.7	22
302	Concentrations of metals and metalloids in soils that have the potential to lead to exceedance of maximum limit concentrations of contaminants in food and feed. Soil Use and Management, 2015, 31, 34-45.	4.9	21
303	A novel pathway of arsenate detoxification. Molecular Microbiology, 2016, 100, 928-930.	2.5	21
304	Cadmium Inhibits Lateral Root Emergence in Rice by Disrupting OsPIN-Mediated Auxin Distribution and the Protective Effect of OsHMA3. Plant and Cell Physiology, 2021, 62, 166-177.	3.1	21
305	Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers. Environment International, 2022, 162, 107157.	10.0	21
306	USE OF THE ENRICHED STABLE ISOTOPE34S TO STUDY SULPHUR UPTAKE AND DISTRIBUTION IN WHEAT. Journal of Plant Nutrition, 2001, 24, 1551-1560.	1.9	20

#	Article	IF	CITATIONS
307	Genetic mapping of ionomic quantitative trait loci in rice grain and straw reveals OsMOT1;1 as the putative causal gene for a molybdenum QTL qMo8. Molecular Genetics and Genomics, 2020, 295, 391-407.	2.1	20
308	Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain. Environmental Pollution, 2021, 289, 117918.	7.5	20
309	Relative impact of soil, metal source and metal concentration on bacterial community structure and community tolerance. Soil Biology and Biochemistry, 2010, 42, 1408-1417.	8.8	19
310	OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. Journal of Experimental Botany, 2020, 71, 3678-3689.	4.8	19
311	Method to determine elemental sulphur in soils applied to measure sulphur oxidation. Soil Biology and Biochemistry, 1996, 28, 1083-1087.	8.8	18
312	ARSENATE INDUCED CHLOROSIS 1/ TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLASTS 132 Protects Chloroplasts from Arsenic Toxicity. Plant Physiology, 2018, 178, 1568-1583.	4.8	18
313	Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain. Science of the Total Environment, 2021, 758, 143596.	8.0	18
314	Stable Sulfur Isotope Ratio Indicates Long-Term Changes in Sulfur Deposition in the Broadbalk Experiment since 1845. Journal of Environmental Quality, 2003, 32, 33.	2.0	18
315	Glucosinolate changes in developing pods of single and double low varieties of autumn-sown oilseed rape (B. napus). Annals of Applied Biology, 1993, 122, 135-143.	2.5	17
316	Food Consumption and Dietary Patterns of Local Adults Living on the Tibetan Plateau: Results from 14 Countries along the Yarlung Tsangpo River. Nutrients, 2021, 13, 2444.	4.1	17
317	INTER-LABORATORY COMPARISON OF SULPHUR AND NITROGEN ANALYSIS IN PLANTS AND SOILS. Communications in Soil Science and Plant Analysis, 2001, 32, 685-695.	1.4	16
318	Environmental factors influencing aluminium accumulation in tea (Camellia sinensis L.). Plant and Soil, 2016, 400, 223-230.	3.7	16
319	Dynamics of metal(loid) resistance genes driven by succession of bacterial community during manure composting. Environmental Pollution, 2019, 255, 113276.	7.5	16
320	Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils., 2002,, 207-214.		16
321	Isolation and Characterization of an Aluminum-resistant Mutant in Rice. Rice, 2016, 9, 60.	4.0	15
322	Historical trends in iodine and selenium in soil and herbage at the Park Grass Experiment, Rothamsted Research, UK. Soil Use and Management, 2017, 33, 252-262.	4.9	15
323	Identifying the species of copper that are toxic to plant roots in alkaline nutrient solutions. Plant and Soil, 2012, 361, 317-327.	3.7	14
324	Suppression of methanogenesis in paddy soil increases dimethylarsenate accumulation and the incidence of straighthead disease in rice. Soil Biology and Biochemistry, 2022, 169, 108689.	8.8	14

#	Article	IF	Citations
325	Cadmium and zinc accumulation by the hyperaccumulator <i>Thlaspi caerulescens</i> from soils enriched with insoluble metal compounds. Soil Science and Plant Nutrition, 2004, 50, 511-515.	1.9	13
326	Biogeochemistry of Arsenic in Paddy Environments. , 2012, , 71-101.		13
327	Protein phosphatase 2A alleviates cadmium toxicity by modulating ethylene production in <pre><scp><i>Arabidopsis thaliana</i></scp></pre> i>/scp>. Plant, Cell and Environment, 2020, 43, 1008-1022.	5.7	13
328	Demethylation of the Antibiotic Methylarsenite is Coupled to Denitrification in Anoxic Paddy Soil. Environmental Science & Env	10.0	13
329	Determination of the Distribution of Sulphur in Wheat Starchy Endosperm Cells Using Secondary Ion Mass Spectroscopy (SIMS) Combined with Isotope Enhancement. Journal of Cereal Science, 2003, 37, 311-318.	3.7	12
330	High resolution SIMS analysis of arsenic in rice. Surface and Interface Analysis, 2013, 45, 309-311.	1.8	12
331	Microbial Processes Mediating the Evolution of Methylarsine Gases from Dimethylarsenate in Paddy Soils. Environmental Science & Environmental Science	10.0	12
332	Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots. Journal of Experimental Botany, 2021, 72, 415-425.	4.8	12
333	The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects Cd distribution to rice grain. Plant and Soil, 2022, 476, 79-95.	3.7	12
334	Comparison of sulphur uptake by oilseed rape and the soil sulphur status of two adjacent fields with different soil series. Soil Use and Management, 1994, 10, 47-50.	4.9	11
335	Arsenicibacter rosenii gen. nov., sp. nov., an efficient arsenic methylating and volatilizing bacterium isolated from an arsenic-contaminated paddy soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3186-3191.	1.7	11
336	Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils. Frontiers of Agricultural Science and Engineering, 2020, 7, 333.	1.4	11
337	<scp>ArsV</scp> and <scp>ArsW</scp> provide synergistic resistance to the antibiotic methylarsenite. Environmental Microbiology, 2021, 23, 7550-7562.	3.8	11
338	Soil amendments with ZnSO4 or MnSO4 are effective at reducing Cd accumulation in rice grain: An application of the voltaic cell principle. Environmental Pollution, 2022, 294, 118650.	7. 5	11
339	Binding and adsorption energy of Cd in soils and its environmental implication for Cd bioavailability. Soil Science Society of America Journal, 2020, 84, 472-482.	2.2	10
340	Univariate and Multivariate QTL Analyses Reveal Covariance Among Mineral Elements in the Rice lonome. Frontiers in Genetics, 2021, 12, 638555.	2.3	10
341	Defect Identification in Wheat Grain by Micro-Fluidic Electrophoresis: Sulfur Deficiency and Bug Damage. Cereal Chemistry, 2007, 84, 301-303.	2.2	9
342	Soil Environment and Pollution Remediation. Pedosphere, 2017, 27, 387-388.	4.0	9

#	Article	IF	Citations
343	<i>N</i> -Hydroxyarylamine <i>O</i> -Acetyltransferases Catalyze Acetylation of 3-Amino-4-Hydroxyphenylarsonic Acid in the 4-Hydroxy-3-Nitrobenzenearsonic Acid Transformation Pathway of <i>Enterobacter</i> sp. Strain CZ-1. Applied and Environmental Microbiology, 2020, 86, .	3.1	9
344	Sulphur nutrition: An important factor for the quality of wheat and rapeseed., 1997,, 917-922.		8
345	Minimizing experimental artefacts in synchrotron-based X-ray analyses of Fe speciation in tissues of rice plants. Journal of Synchrotron Radiation, 2019, 26, 1272-1279.	2.4	7
346	Variation in cadmium accumulation and speciation within the same population of the hyperaccumulator Noccaea caerulescens grown in a moderately contaminated soil. Plant and Soil, 2022, 475, 379-394.	3.7	7
347	Risk from Arsenic in Rice Grain. , 2012, , 31-50.		6
348	Functional characterization of the methylarseniteâ€inducible arsRM operon from Noviherbaspirillum denitrificans   HC18. Environmental Microbiology, 2022, , .	3.8	6
349	<scp>ArsZ</scp> from <i>Ensifer adhaerens</i> i> <scp>ST2</scp> is a novel methylarsenite oxidase. Environmental Microbiology, 2022, 24, 3013-3021.	3.8	6
350	Elucidating heterogeneous iron biomineralization patterns in a denitrifying As(<scp>iii</scp>)-oxidizing bacterium: implications for arsenic immobilization. Environmental Science: Nano, 2022, 9, 1076-1090.	4.3	5
351	Significant Nutritional Gaps in Tibetan Adults Living in Agricultural Counties Along Yarlung Zangbo River. Frontiers in Nutrition, 2022, 9, 845026.	3.7	5
352	QTL pyramiding for producing nutritious and safe rice grains. Journal of Integrative Plant Biology, 2020, 62, 264-268.	8.5	4
353	The Physiology of Arsenic in Rice. , 2012, , 103-138.		4
354	Glutathione Is Involved in the Reduction of Methylarsenate to Generate Antibiotic Methylarsenite in Enterobacter sp. Strain CZ-1. Applied and Environmental Microbiology, 2022, 88, aem0246721.	3.1	4
355	Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. Soil Systems, 2022, 6, 36.	2.6	4
356	Response to the Comment by Van Geen and Duxbury. Environmental Science & Envir	10.0	3
357	Future research needs for environmental science in China. Geography and Sustainability, 2021, , .	4.3	3
358	Strategies for Producing Low Arsenic Rice. , 2012, , 139-151.		3
359	Local and Systemic Response to Heterogeneous Sulfate Resupply after Sulfur Deficiency in Rice. International Journal of Molecular Sciences, 2022, 23, 6203.	4.1	3
360	A new method for the determination of the 34S/32S ratio of water-soluble sulphur in soil. International Journal of Environmental Analytical Chemistry, 2004, 84, 323-329.	3.3	2

#	Article	IF	CITATIONS
361	Soil and human health. European Journal of Soil Science, 2018, 69, 158-158.	3.9	2
362	Special section on soil and human health – An editorial. European Journal of Soil Science, 2019, 70, 859-861.	3.9	2
363	China national food safety standards of cadmium in staple foods: Issues and thinking. Chinese Science Bulletin, 2022, 67, 3252-3260.	0.7	2
364	Soil pollution and soil organisms: an overview of research progress and perspectives. Acta Ecologica Sinica, 2015, 35, .	0.1	1
365	The Vacuolar Molybdate Transporter OsMOT1;2 Controls Molybdenum Remobilization in Rice. Frontiers in Plant Science, 2022, 13, 863816.	3.6	1
366	Understanding Elemental Uptake in Plants Using High Resolution SIMS and Complementary Techniques. Microscopy and Microanalysis, 2014, 20, 1316-1317.	0.4	0
367	METHODS FOR THE ANALYSIS OF SELENIUM AND OTHER MINERALS. , 2009, , 95-111.		0
368	Arsenic in Other Crops. , 2012, , 153-166.		0