Pascale Chevallier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473090/publications.pdf

Version: 2024-02-01

46 papers

914 citations

³⁹⁴²⁸⁶
19
h-index

29 g-index

46 all docs 46 docs citations

46 times ranked

1586 citing authors

#	Article	IF	Citations
1	Efficient extraction of a high molecular weight ulvan from stranded Ulva sp. biomass: application on the active biomembrane synthesis. Biomass Conversion and Biorefinery, 2023, 13, 3975-3985.	2.9	5
2	Surface processing for iron-based degradable alloys: A preliminary study on the importance of acid pickling. Bioactive Materials, 2022, 11 , $166-180$.	8.6	11
3	Improving the radiopacity of Fe–Mn biodegradable metals by magnetron-sputtered W–Fe–Mn–C coatings: Application for thinner stents. Bioactive Materials, 2022, 12, 64-70.	8.6	3
4	Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Frontiers in Bioengineering and Biotechnology, 2022, 10, 814162.	2.0	8
5	Aerosolâ€assisted openâ€air plasma deposition of acrylateâ€based composite coatings: Molecule release control through precursor selection. Plasma Processes and Polymers, 2022, 19, .	1.6	2
6	Investigation of 3â€aminopropyltrimethoxysilane for direct deposition of thin films containing primary amine groups by openâ€air plasma jets. Plasma Processes and Polymers, 2022, 19, .	1.6	4
7	Inside Front Cover: Plasma Process. Polym. 7/2022. Plasma Processes and Polymers, 2022, 19, .	1.6	0
8			

#	Article	IF	CITATIONS
19	A New Preventive Strategy for Better Remediation of Marine Biofouling by an Eco-friendly Physical and Morphological Modification Process. Silicon, 2020, 12, 2901-2909.	1.8	O
20	Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose, 2020, 27, 3055-3083.	2.4	45
21	Luminal Plasma Treatment for Small Diameter Polyvinyl Alcohol Tubular Scaffolds. Frontiers in Bioengineering and Biotechnology, 2019, 7, 117.	2.0	12
22	Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 74.	2.0	20
23	Comparison of the linking arm effect on the biological performance of a CD31 agonist directly grafted on L605 CoCr alloy by a plasma-based multistep strategy. Biointerphases, 2019, 14, 051009.	0.6	3
24	Understanding the effect of the reinforcement addition on corrosion behavior of Fe/Mg2Si composites for biodegradable implant applications. Materials Chemistry and Physics, 2019, 223, 771-778.	2.0	20
25	A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1489-e1500.	1.3	37
26	Oxidative Plasma Treatment of Fluorocarbon Surfaces for Blood-Contacting Applications. Materials Science Forum, 2018, 941, 2528-2533.	0.3	3
27	Nano-Thick Amorphous Oxide Layer Produced by Plasma on Type 316L Stainless Steel for Improved Corrosion Resistance Under Plastic Deformation. Corrosion, 2018, 74, 1011-1022.	0.5	3
28	Lowâ€pressure plasma treatment for direct amination of L605 CoCr alloy for the further covalent grafting of molecules. Plasma Processes and Polymers, 2018, 15, 1700214.	1.6	5
29	Antibacterial Coatings Based on Chitosan for Pharmaceutical and Biomedical Applications. Current Pharmaceutical Design, 2018, 24, 866-885.	0.9	42
30	Biomimetic coating of crossâ€inked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2405-2415.	2.1	24
31	Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Materials Science and Engineering C, 2017, 72, 682-691.	3.8	42
32	The use of multiple pseudo-physiological solutions to simulate the degradation behavior of pure iron as a metallic resorbable implant: a surface-characterization study. Physical Chemistry Chemical Physics, 2016, 18, 19637-19646.	1.3	32
33	Characterization of Amorphous Oxide Nano-Thick Layers on 316L Stainless Steel by Electron Channeling Contrast Imaging and Electron Backscatter Diffraction. Microscopy and Microanalysis, 2016, 22, 997-1006.	0.2	10
34	Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study. Carbohydrate Polymers, 2016, 147, 28-36.	5.1	34
35	Extremely Small Iron Oxide Nanoparticles Stabilized with Catecholâ€Functionalized Multidentate Block Copolymer for Enhanced MRI. ChemistrySelect, 2016, 1, 4087-4091.	0.7	9
36	In vitro degradation behavior of Fe–20Mn–1.2C alloy in three different pseudo-physiological solutions. Materials Science and Engineering C, 2016, 61, 564-573.	3.8	50

3

#	Article	IF	CITATION
37	Effect of Poly-L-Lysine coating on titanium osseointegration: from characterization to in vivo studies. Journal of Oral Implantology, 2015, 41, 626-631.	0.4	28
38	Arginine-glycine-glutamine and serine-isoleucine-lysine-valine-alanine-valine modified poly(<scp>I</scp> -lactide) films: Bioactive molecules used for surface grafting to guide cellular contractile phenotype. Biointerphases, 2014, 9, 029002.	0.6	3
39	Covalent Grafting of Chitosan on Plasma-Treated Polytetrafluoroethylene Surfaces for Biomedical Applications. Journal of Biomaterials and Tissue Engineering, 2014, 4, 915-924.	0.0	16
40	Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Materials Science and Engineering C, 2013, 33, 4715-4724.	3.8	73
41	Blood protein adsorption on sulfonated chitosan and \hat{l}^2 -carrageenan films. Colloids and Surfaces B: Biointerfaces, 2013, 111, 719-725.	2.5	49
42	Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter, 2013, 3, .	2.6	45
43	Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS. Materials, 2010, 3, 1515-1532.	1.3	22
44	On the Growth of Fluorocarbon Thin Films Deposited on Plasmaâ€Etched 316L Stainless Steel. Plasma Processes and Polymers, 2010, 7, 309-317.	1.6	21
45	In vitro Biological Performances of Phosphorylcholine-Grafted ePTFE Prostheses through RFGD Plasma Techniques. Macromolecular Bioscience, 2005, 5, 829-839.	2.1	50
46	Engineering Surfaces for Bioconjugation:  Developing Strategies and Quantifying the Extent of the Reactions. Bioconjugate Chemistry, 2004, 15, 1146-1156.	1.8	51