
William D Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2472822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mu Nature Communications, 2021, 12, 6409.	tation. 12.8	19
2	<i>Trem2</i> promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Human Molecular Genetics, 2020, 29, 3224-3248.	2.9	76
3	Molecular design of hypothalamus development. Nature, 2020, 582, 246-252.	27.8	105
4	Cadherin 8 regulates proliferation of cortical interneuron progenitors. Brain Structure and Function, 2019, 224, 277-292.	2.3	10
5	Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain. Cerebral Cortex, 2018, 28, 2577-2593.	2.9	27
6	Semaphorin3A–neuropilin1 signalling is involved in the generation of cortical interneurons. Brain Structure and Function, 2017, 222, 2217-2233.	2.3	24
7	Protective role of Cadherin 13 in interneuron development. Brain Structure and Function, 2017, 222, 3567-3585.	2.3	14
8	Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. Journal of Comparative Neurology, 2016, 524, 518-534.	1.6	17
9	A multicentre validation of Metasin: a molecular assay for the intraoperative assessment of sentinel lymph nodes from breast cancer patients. Histopathology, 2016, 68, 875-887.	2.9	7
10	Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovascular Research, 2015, 106, 55-66.	3.8	56
11	Robo1 Modulates Proliferation and Neurogenesis in the Developing Neocortex. Journal of Neuroscience, 2014, 34, 5717-5731.	3.6	41
12	Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nature Communications, 2014, 5, 4421.	12.8	70
13	Limk2 mediates semaphorin signalling in cortical interneurons migrating through the subpallium. Biology Open, 2013, 2, 277-282.	1.2	17
14	Slit–Roundabout Signaling Regulates the Development of the Cardiac Systemic Venous Return and Pericardium. Circulation Research, 2013, 112, 465-475.	4.5	42
15	Robo1 Regulates the Migration and Laminar Distribution of Upper-Layer Pyramidal Neurons of the Cerebral Cortex. Cerebral Cortex, 2013, 23, 1495-1508.	2.9	35
16	Control of human hematopoietic stem/progenitor cell migration by the extracellular matrix protein Slit3. Laboratory Investigation, 2012, 92, 1129-1139.	3.7	30
17	Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development (Cambridge), 2012, 139, 3326-3331.	2.5	27
18	Noradrenergic receptor activation alters the migration and distribution of interneurons in the developing neocortex (Commentary on <scp>R</scp> iccio <i>et al</i> .). European Journal of Neuroscience, 2012, 36, 2877-2878.	2.6	0

WILLIAM D ANDREWS

#	Article	IF	CITATIONS
19	Neurons on the Move: Migration and Lamination of Cortical Interneurons. NeuroSignals, 2012, 20, 168-189.	0.9	67
20	Differential gene expression in migratory streams of cortical interneurons. European Journal of Neuroscience, 2011, 34, 1584-1594.	2.6	41
21	Robo1 Regulates Semaphorin Signaling to Guide the Migration of Cortical Interneurons through the Ventral Forebrain. Journal of Neuroscience, 2011, 31, 6174-6187.	3.6	92
22	Differential gene expression in migrating cortical interneurons during mouse forebrain development. Journal of Comparative Neurology, 2010, 518, 1232-1248.	1.6	36
23	Robo-2 Controls the Segregation of a Portion of Basal Vomeronasal Sensory Neuron Axons to the Posterior Region of the Accessory Olfactory Bulb. Journal of Neuroscience, 2009, 29, 14211-14222.	3.6	41
24	The Role of Robo3 in the Development of Cortical Interneurons. Cerebral Cortex, 2009, 19, i22-i31.	2.9	32
25	Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating <i>Gbx2 </i> expression in the pharyngeal ectoderm. Development (Cambridge), 2009, 136, 3173-3183.	2.5	124
26	Robo2 is required for Slit-mediated intraretinal axon guidance. Developmental Biology, 2009, 335, 418-426.	2.0	30
27	Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain. Molecular and Cellular Neurosciences, 2008, 37, 719-730.	2.2	37
28	The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Developmental Biology, 2008, 313, 648-658.	2.0	127
29	Requirement for Slit-1 and Robo-2 in Zonal Segregation of Olfactory Sensory Neuron Axons in the Main Olfactory Bulb. Journal of Neuroscience, 2007, 27, 9094-9104.	3.6	105
30	Disruption of ROBO2 Is Associated with Urinary Tract Anomalies and Confers Risk of Vesicoureteral Reflux. American Journal of Human Genetics, 2007, 80, 616-632.	6.2	189
31	Neuropilins and Their Ligands Are Important in the Migration of Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2007, 27, 2387-2395.	3.6	78
32	Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism. Neural Development, 2007, 2, 21.	2.4	110
33	Slit?Robo interactions during cortical development. Journal of Anatomy, 2007, 211, 188-198.	1.5	72
34	Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development (Cambridge), 2006, 133, 2243-2252.	2.5	234
35	Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Developmental Dynamics, 2005, 233, 41-51.	1.8	51
36	Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development (Cambridge), 2005, 132, 4483-4495.	2.5	73

WILLIAM D ANDREWS

#	Article	IF	CITATIONS
37	Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Molecular and Cellular Neurosciences, 2005, 30, 485-493.	2.2	53
38	Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. Journal of Comparative Neurology, 2004, 468, 467-481.	1.6	41
39	Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Molecular and Cellular Neurosciences, 2004, 26, 232-240.	2.2	102
40	On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion. Development (Cambridge), 2003, 130, 5073-5082.	2.5	40