
Rosa-Ana GonzÃ;lez Polo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2472754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroprotective properties of queen bee acid by autophagy induction. Cell Biology and Toxicology, 2023, 39, 751-770.	2.4	7
2	The parkinsonian LRRK2 R1441G mutation shows macroautophagy-mitophagy dysregulation concomitant with endoplasmic reticulum stress. Cell Biology and Toxicology, 2022, 38, 889-911.	2.4	9
3	Biological effects of olive oil phenolic compounds on mitochondria. Molecular and Cellular Oncology, 2022, 9, 2044263.	0.3	7
4	Links Between Paraquat and Parkinson's Disease. , 2021, , 1-19.		1
5	Toxicity of Necrostatin-1 in Parkinson's Disease Models. Antioxidants, 2020, 9, 524.	2.2	13
6	Metabolic alterations in plasma from patients with familial and idiopathic Parkinson's disease. Aging, 2020, 12, 16690-16708.	1.4	32
7	Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients. Molecular Neurobiology, 2019, 56, 2466-2481.	1.9	50
8	Mitophagy in human astrocytes treated with the antiretroviral drug Efavirenz: Lack of evidence or evidence of the lack. Antiviral Research, 2019, 168, 36-50.	1.9	7
9	The paradigm of protein acetylation in Parkinson's disease. Neural Regeneration Research, 2019, 14, 975.	1.6	9
10	ER–mitochondria signaling in Parkinson's disease. Cell Death and Disease, 2018, 9, 337.	2.7	118
11	Acetylome in Human Fibroblasts From Parkinson's Disease Patients. Frontiers in Cellular Neuroscience, 2018, 12, 97.	1.8	15
12	Turnover of Lipidated LC3 and Autophagic Cargoes in Mammalian Cells. Methods in Enzymology, 2017, 587, 55-70.	0.4	18
13	Fluorescent FYVE Chimeras to Quantify PtdIns3P Synthesis During Autophagy. Methods in Enzymology, 2017, 587, 257-269.	0.4	5
14	N370S <i>â€GBA1</i> mutation causes lysosomal cholesterol accumulation in Parkinson's disease. Movement Disorders, 2017, 32, 1409-1422.	2.2	86
15	Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 6287-6303.	1.9	60
16	Mitochondria: Key Organelle in Parkinson's Disease. Parkinson's Disease, 2016, 2016, 1-2.	0.6	3
17	G2019S Mutation of LRRK2 Increases Autophagy via MEK/ERK Pathway. , 2016, , 123-142.		2
18	mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines. Data in Brief, 2016, 7, 641-647.	0.5	39

#	Article	IF	CITATIONS
19	The Basics of Autophagy. , 2016, , 3-20.		6
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
21	PINK1 deficiency enhances autophagy and mitophagy induction. Molecular and Cellular Oncology, 2016, 3, e1046579.	0.3	18
22	IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis. Journal of the Association for Laboratory Automation, 2016, 21, 246-259.	2.8	7
23	Pompe Disease and Autophagy: Partners in Crime, or Cause and Consequence?. Current Medicinal Chemistry, 2016, 23, 2275-2285.	1.2	6
24	Routine Western blot to check autophagic flux: Cautions and recommendations. Analytical Biochemistry, 2015, 477, 13-20.	1.1	25
25	Control of Autophagy in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 91-122.	0.4	1
26	Is the Modulation of Autophagy the Future in the Treatment of Neurodegenerative Diseases?. Current Topics in Medicinal Chemistry, 2015, 15, 2152-2174.	1.0	11
27	G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology, 2014, 324, 1-9.	2.0	40
28	Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiology of Disease, 2014, 62, 426-440.	2.1	49
29	Links Between Paraquat and Parkinson's Disease. , 2014, , 819-842.		0
30	The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cellular and Molecular Life Sciences, 2013, 70, 121-136.	2.4	148
31	Autophagy, mitochondria and 3â€nitropropionic acid joined in the same model. British Journal of Pharmacology, 2013, 168, 60-62.	2.7	5
32	Implication of Autophagy in Parkinson's Disease. Parkinson's Disease, 2013, 2013, 1-2.	0.6	1
33	Possible involvement of the relationship of LRRK2 and autophagy in Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1129-1133.	1.6	4
34	The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts. Autophagy, 2012, 8, 1537-1539.	4.3	23
35	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
36	Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies. Parkinson's Disease, 2012, 2012, 1-9.	0.6	6

#	Article	IF	CITATIONS
37	Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology, 2011, 32, 935-943.	1.4	70
38	ASK1 Overexpression Accelerates Paraquat-Induced Autophagy via Endoplasmic Reticulum Stress. Toxicological Sciences, 2011, 119, 156-168.	1.4	48
39	Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 2010, 48, 1370-1381.	1.3	120
40	DJ-1 as a Modulator of Autophagy: An Hypothesis. Scientific World Journal, The, 2010, 10, 1574-1579.	0.8	4
41	Curcumin exposure induces expression of the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neuroscience Letters, 2010, 468, 120-124.	1.0	27
42	The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells. NeuroToxicology, 2010, 31, 701-708.	1.4	8
43	Effect of paraquat exposure on nitric oxide-responsive genes in rat mesencephalic cells. Nitric Oxide - Biology and Chemistry, 2010, 23, 51-59.	1.2	13
44	Nitric Oxide-Mediated Toxicity in Paraquat-Exposed SH-SY5Y Cells: A Protective Role of 7-Nitroindazole. Neurotoxicity Research, 2009, 16, 160-173.	1.3	30
45	Silencing DJâ€1 reveals its contribution in paraquatâ€induced autophagy. Journal of Neurochemistry, 2009, 109, 889-898.	2.1	71
46	Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species. NeuroToxicology, 2009, 30, 1008-1018.	1.4	30
47	Identification of Genes Associated with Paraquat-Induced Toxicity in SH-SY5Y Cells by PCR Array Focused on Apoptotic Pathways. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1457-1467.	1.1	27
48	Relationship between Autophagy and Apoptotic Cell Death in Human Neuroblastoma Cells Treated with Paraquat: Could Autophagy be a "Brake―in Paraquat-Induced Apoptotic Death?. Autophagy, 2007, 3, 366-367.	4.3	36
49	Inhibition of Paraquat-Induced Autophagy Accelerates the Apoptotic Cell Death in Neuroblastoma SH-SY5Y Cells. Toxicological Sciences, 2007, 97, 448-458.	1.4	124
50	Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells. CBE Life Sciences Education, 2006, 5, 287-295.	1.1	2
51	Low Concentrations of Paraquat Induces Early Activation of Extracellular Signal-Regulated Kinase 1/2, Protein Kinase B, and c-Jun N-terminal Kinase 1/2 Pathways: Role of c-Jun N-Terminal Kinase in Paraquat-Induced Cell Death. Toxicological Sciences, 2006, 92, 507-515.	1.4	36
52	PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene, 2005, 24, 7503-7513.	2.6	88
53	The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. Journal of Cell Science, 2005, 118, 3091-3102.	1.2	487
54	Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 2005, 25, 1025-1040.	1.1	1,533

#	Article	IF	CITATIONS
55	Heat shock proteins protect both MPP+ and paraquat neurotoxicity. Brain Research Bulletin, 2005, 67, 509-514.	1.4	16
56	Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Research, 2004, 1011, 170-176.	1.1	95
57	MPP ⁺ : Mechanism for Its Toxicity in Cerebellar Granule Cells. Molecular Neurobiology, 2004, 30, 253-264.	1.9	27
58	Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants. Cell Biology International, 2004, 28, 373-380.	1.4	51
59	Viral proteins targeting mitochondria: controlling cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1659, 178-189.	0.5	147
60	Vitamin E blocks early events induced by 1-methyl-4-phenylpyridinium (MPP+) in cerebellar granule cells. Journal of Neurochemistry, 2003, 84, 305-315.	2.1	44
61	Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 2003, 22, 3927-3936.	2.6	357
62	The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene, 2003, 22, 6220-6230.	2.6	83
63	Mitochondrion-targeted apoptosis regulators of viral origin. Biochemical and Biophysical Research Communications, 2003, 304, 575-581.	1.0	51
64	MPP+ Causes Inhibition of Cellular Energy Supply in Cerebellar Granule Cells. NeuroToxicology, 2003, 24, 219-225.	1.4	20
65	Diagnostic performance of arginase activity in colorectal cancer. Clinical and Experimental Medicine, 2002, 2, 53-57.	1.9	29
66	Mechanisms of MPP + incorporation into cerebellar granule cells. Brain Research Bulletin, 2001, 56, 119-123.	1.4	25
67	Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells. Journal of Neurochemistry, 2001, 78, 199-206.	2.1	87
68	Different mechanisms of protection against apoptosis by valproate and Li+. FEBS Journal, 1999, 266, 886-891.	0.2	90