Richard Titball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2472229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, 413, 523-527.	13.7	1,144
2	Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proceedings of the United States of America, 2004, 101, 14240-14245.	3.3	675
3	Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends in Microbiology, 2009, 17, 32-36.	3.5	259
4	A new improved sub-unit vaccine for plague: the basis of protection. FEMS Immunology and Medical Microbiology, 1995, 12, 223-230.	2.7	205
5	Structure of the key toxin in gas gangrene. Nature Structural and Molecular Biology, 1998, 5, 738-746.	3.6	174
6	Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology (United Kingdom), 2004, 150, 2669-2676.	0.7	172
7	Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nature Structural and Molecular Biology, 2004, 11, 797-798.	3.6	171
8	A <i>Burkholderia pseudomallei</i> protein microarray reveals serodiagnostic and cross-reactive antigens. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13499-13504.	3.3	171
9	Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine, 2001, 19, 4465-4472.	1.7	154
10	A genetically engineered vaccine against the alpha-toxin of Clostridium perfringens protects mice against experimental gas gangrene. Vaccine, 1993, 11, 1253-1258.	1.7	151
11	A sub-unit vaccine elicits IgG in serum, spleen cell cultures and bronchial washings and protects immunized animals against pneumonic plague. Vaccine, 1997, 15, 1079-1084.	1.7	143
12	An IgG1 titre to the F1 and V antigens correlates with protection against plague in the mouse model. Clinical and Experimental Immunology, 1999, 116, 107-114.	1.1	133
13	Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiology, 2011, 11, 11.	1.3	132
14	Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis. Journal of Medical Microbiology, 2004, 53, 1177-1182.	0.7	116
15	A Mutant of Burkholderia pseudomallei, Auxotrophic in the Branched Chain Amino Acid Biosynthetic Pathway, Is Attenuated and Protective in a Murine Model of Melioidosis. Infection and Immunity, 2002, 70, 5290-5294.	1.0	112
16	Role of T Cells in Innate and Adaptive Immunity against MurineBurkholderia pseudomalleiInfection. Journal of Infectious Diseases, 2006, 193, 370-379.	1.9	109
17	Salmonellavaccines for use in humans: present and future perspectives. FEMS Microbiology Reviews, 2002, 26, 339-353.	3.9	103
18	Development of Signature-Tagged Mutagenesis in Burkholderia pseudomallei To Identify Genes Important in Survival and Pathogenesis. Infection and Immunity, 2007, 75, 1186-1195.	1.0	96

#	Article	IF	CITATIONS
19	Molecular basis of toxicity of <i>Clostridium perfringens</i> epsilon toxin. FEBS Journal, 2011, 278, 4589-4601.	2.2	95
20	<i>Galleria mellonella</i> as a model host for microbiological and toxin research. Virulence, 2016, 7, 840-845.	1.8	95
21	Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes. PLoS Neglected Tropical Diseases, 2012, 6, e1488.	1.3	94
22	Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. Journal of Medical Microbiology, 2002, 51, 539-553.	0.7	93
23	Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology (United Kingdom), 2009, 155, 1516-1522.	0.7	91
24	Molecular Architecture and Functional Analysis of NetB, a Pore-forming Toxin from Clostridium perfringens. Journal of Biological Chemistry, 2013, 288, 3512-3522.	1.6	90
25	Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials?. Vaccine, 2017, 35, 5981-5989.	1.7	84
26	Expression of the Yersinia pestis capsular antigen (F1 antigen) on the surface of an aroA mutant of Salmonella typhimurium induces high levels of protection against plague. Infection and Immunity, 1997, 65, 1926-1930.	1.0	83
27	Recombinant <i>Bacillus subtilis</i> Expressing the <i>Clostridium perfringens</i> Alpha Toxoid Is a Candidate Orally Delivered Vaccine against Necrotic Enteritis. Infection and Immunity, 2008, 76, 5257-5265.	1.0	81
28	The Condition-Dependent Transcriptional Landscape of Burkholderia pseudomallei. PLoS Genetics, 2013, 9, e1003795.	1.5	81
29	The HicA toxin from <i>Burkholderia pseudomallei</i> has a role in persister cell formation. Biochemical Journal, 2014, 459, 333-344.	1.7	81
30	Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology (United Kingdom), 2005, 151, 1919-1926.	0.7	79
31	A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 447-456.	1.7	79
32	Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere, 2018, 198, 469-472.	4.2	79
33	Characterization of the O antigen gene cluster and structural analysis of the O antigen of Francisella tularensis subsp. tularensis. Journal of Medical Microbiology, 2003, 52, 845-851.	0.7	77
34	Immunization with the Câ€Domain of αâ€Toxin Prevents Lethal Infection, Localizes Tissue Injury, and Promotes Host Response to Challenge withClostridium perfringens. Journal of Infectious Diseases, 2004, 190, 767-773.	1.9	77
35	Genome-Wide Saturation Mutagenesis of Burkholderia pseudomallei K96243 Predicts Essential Genes and Novel Targets for Antimicrobial Development. MBio, 2014, 5, e00926-13.	1.8	75
36	Insect Infection Model for <i>Campylobacter jejuni</i> Reveals That <i>O</i> â€methyl Phosphoramidate Has Insecticidal Activity. Journal of Infectious Diseases, 2010, 201, 100129142112076-000.	1.9	72

#	Article	IF	CITATIONS
37	Development of Vaccines Against Burkholderia Pseudomallei. Frontiers in Microbiology, 2011, 2, 198.	1.5	70
38	Biochemical and immunological properties of the C-terminal domain of the alpha-toxin ofClostridium perfringens. FEMS Microbiology Letters, 1993, 110, 45-50.	0.7	68
39	Burkholderia pseudomallei: animal models of infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, S111-S116.	0.7	67
40	Macromolecular organisation of recombinantYersinia pestisF1 antigen and the effect of structure on immunogenicity. FEMS Immunology and Medical Microbiology, 1998, 21, 213-221.	2.7	64
41	Characterisation of the calcium-binding C-terminal domain of Clostridium perfringens alpha-toxin 1 1Edited by A Klug. Journal of Molecular Biology, 1999, 294, 757-770.	2.0	63
42	Human Immune Responses to Burkholderia pseudomallei Characterized by Protein Microarray Analysis. Journal of Infectious Diseases, 2011, 203, 1002-1011.	1.9	62
43	Production of a non-toxic site-directed mutant of Clostridium perfringens ε-toxin which induces protective immunity in mice. Microbiology (United Kingdom), 1998, 144, 333-341.	0.7	61
44	Adammutant ofYersinia pestisis attenuated and induces protection against plague. FEMS Microbiology Letters, 2005, 252, 251-256.	0.7	61
45	<i>Burkholderia pseudomallei</i> sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Research, 2015, 25, 129-141.	2.4	61
46	Vaccines against intracellular bacterial pathogens. Drug Discovery Today, 2008, 13, 596-600.	3.2	60
47	Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. International Journal of Antimicrobial Agents, 2013, 41, 330-336.	1.1	59
48	Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine, 2015, 33, 686-692.	1.7	59
49	Trehalose and bacterial virulence. Virulence, 2020, 11, 1192-1202.	1.8	58
50	Identification of a LolC Homologue in Burkholderia pseudomallei , a Novel Protective Antigen for Melioidosis. Infection and Immunity, 2007, 75, 4173-4180.	1.0	57
51	Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine, 2012, 30, 6777-6782.	1.7	56
52	Protection against avian necrotic enteritis after immunisation with NetB genetic or formaldehyde toxoids. Vaccine, 2013, 31, 4003-4008.	1.7	56
53	Local and systemic immune response to a microencapsulated sub-unit vaccine for plague. Vaccine, 1996, 14, 1613-1619.	1.7	55
54	Phenotypic and Functional Characterization of Human Memory T Cell Responses to Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2009, 3, e407.	1.3	53

#	Article	IF	CITATIONS
55	The identification of surface proteins of Burkholderia pseudomallei. Vaccine, 2007, 25, 2664-2672.	1.7	52
56	Clostridium perfringens vaccines. Vaccine, 2009, 27, D44-D47.	1.7	51
57	Low-Dose Exposure of C57BL/6 Mice to Burkholderia pseudomallei Mimics Chronic Human Melioidosis. American Journal of Pathology, 2011, 179, 270-280.	1.9	51
58	Exploiting the Burkholderia pseudomallei Acute Phase Antigen BPSL2765 for Structure-Based Epitope Discovery/Design in Structural Vaccinology. Chemistry and Biology, 2013, 20, 1147-1156.	6.2	50
59	Progress toward development of vaccines against melioidosis: A review. Clinical Therapeutics, 2010, 32, 1437-1445.	1.1	49
60	Polysaccharides and virulence of Burkholderia pseudomallei. Journal of Medical Microbiology, 2007, 56, 1005-1010.	0.7	48
61	Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders. Vaccine, 2009, 27, 4447-4451.	1.7	46
62	Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei. Microbiology (United Kingdom), 2011, 157, 2392-2400.	0.7	46
63	Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Burkholderia pseudomallei. Vaccine Journal, 2017, 24, .	3.2	46
64	Evidence of <i>Clostridium perfringens</i> epsilon toxin associated with multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 653-660.	1.4	46
65	Molecular variation between the α-toxins from the type strain (NCTC 8237) and clinical isolates of Clostridium perfringens associated with disease in man and animals. Microbiology (United Kingdom), 1996, 142, 191-198.	0.7	45
66	The pore structure of Clostridium perfringens epsilon toxin. Nature Communications, 2019, 10, 2641.	5.8	44
67	Flagellar Glycosylation in Burkholderia pseudomallei and Burkholderia thailandensis. Journal of Bacteriology, 2011, 193, 3577-3587.	1.0	43
68	<i>Galleria mellonella</i> as an infection model to investigate virulence of <i>Vibrio parahaemolyticus</i> . Virulence, 2018, 9, 197-207.	1.8	43
69	Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. Journal of Fungi (Basel, Switzerland), 2018, 4, 108.	1.5	43
70	From crystal structure to <i>inÂsilico</i> epitope discovery in the <i>BurkholderiaÂpseudomallei</i> flagellar hookâ€associated protein FlgK. FEBS Journal, 2015, 282, 1319-1333.	2.2	42
71	Age influences resistance ofCaenorhabditis elegansto killing by pathogenic bacteria. FEMS Microbiology Letters, 2004, 234, 281-287.	0.7	40
72	<i>Clostridium perfringens</i> epsilon toxin H149A mutant as a platform for receptor binding studies. Protein Science, 2013, 22, 650-659.	3.1	40

#	Article	IF	CITATIONS
73	Lipopolysaccharide from Burkholderia thailandensis E264 provides protection in a murine model of melioidosis. Vaccine, 2010, 28, 7551-7555.	1.7	38
74	UDP-glucose Deficiency Causes Hypersensitivity to the Cytotoxic Effect of Clostridium perfringens Phospholipase C. Journal of Biological Chemistry, 1998, 273, 24433-24438.	1.6	37
75	Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathogens, 2021, 17, e1009194.	2.1	37
76	Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia. Vaccine, 2014, 32, 2682-2687.	1.7	36
77	Protection against Experimental Melioidosis with a Synthetic <i>manno</i> -Heptopyranose Hexasaccharide Glycoconjugate. Bioconjugate Chemistry, 2016, 27, 1435-1446.	1.8	36
78	Role of RelA and SpoT in Burkholderia pseudomallei Virulence and Immunity. Infection and Immunity, 2012, 80, 3247-3255.	1.0	35
79	Role of trehalose biosynthesis in environmental survival and virulence of Salmonella enterica serovar typhimurium. Research in Microbiology, 2002, 153, 281-287.	1.0	31
80	Bacterial Drug Tolerance under Clinical Conditions Is Governed by Anaerobic Adaptation but not Anaerobic Respiration. Antimicrobial Agents and Chemotherapy, 2014, 58, 5775-5783.	1.4	31
81	Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics, 2019, 20, 441.	1.2	31
82	Differences in carbon source utilisation distinguish Campylobacter jejuni from Campylobacter coli. BMC Microbiology, 2014, 14, 262.	1.3	30
83	Trehalase plays a role in macrophage colonization and virulence of <i>Burkholderia pseudomallei</i> in insect and mammalian hosts. Virulence, 2017, 8, 30-40.	1.8	30
84	Novel multi-component vaccine approaches for <i>Burkholderia pseudomallei</i> . Clinical and Experimental Immunology, 2019, 196, 178-188.	1.1	28
85	Macroautophagy is essential for killing of intracellular <i>Burkholderia pseudomallei</i> in human neutrophils. Autophagy, 2015, 11, 748-755.	4.3	27
86	Immunisation with proteins expressed during chronic murine melioidosis provides enhanced protection against disease. Vaccine, 2016, 34, 1665-1671.	1.7	27
87	The increased prevalence of Vibrio species and the first reporting of Vibrio jasicida and Vibrio rotiferianus at UK shellfish sites. Water Research, 2022, 211, 117942.	5.3	26
88	Protection against Experimental Melioidosis following Immunisation with a Lipopolysaccharide-Protein Conjugate. Journal of Immunology Research, 2014, 2014, 1-10.	0.9	25
89	Recombinant Vaccinia Viruses Protect AgainstClostridium perfringensα-Toxin. Viral Immunology, 1999, 12, 97-105.	0.6	24
90	Combining Vaccination and Postexposure CpG Therapy Provides Optimal Protection Against Lethal Sepsis in a Biodefense Model of Human Melioidosis. Journal of Infectious Diseases, 2011, 204, 636-644.	1.9	24

6

#	Article	IF	CITATIONS
91	A 55 kDa hypothetical membrane protein is an iron-regulated virulence factor of Francisella tularensis subsp. novicida U112. Journal of Medical Microbiology, 2007, 56, 1268-1276.	0.7	23
92	Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiology, 2019, 19, 97.	1.3	23
93	<i>Burkholderia pseudomallei</i> Proteins Presented by Monocyte-Derived Dendritic Cells Stimulate Human Memory T Cells <i>In Vitro</i> . Infection and Immunity, 2011, 79, 305-313.	1.0	21
94	Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis. Research in Microbiology, 2014, 165, 41-49.	1.0	20
95	Variable protection against experimental broiler necrotic enteritis after immunization with the C-terminal fragment ofClostridium perfringensalpha-toxin and a non-toxic NetB variant. Avian Pathology, 2016, 45, 381-388.	0.8	20
96	Analysis of protection afforded by a Clostridium perfringens α-toxoid against heterologous clostridial phospholipases C. Microbial Pathogenesis, 2007, 43, 161-165.	1.3	18
97	Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence. Research in Microbiology, 2016, 167, 159-167.	1.0	18
98	Identification of type II toxin-antitoxin modules in <i>Burkholderia pseudomallei</i> . FEMS Microbiology Letters, 2013, 338, 86-94.	0.7	17
99	Stabilisation of Salmonella vaccine vectors by the induction of trehalose biosynthesis. Vaccine, 2000, 19, 1239-1245.	1.7	16
100	An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions. BMC Microbiology, 2017, 17, 163.	1.3	16
101	The rapid progress in COVID vaccine development and implementation. Npj Vaccines, 2022, 7, 20.	2.9	15
102	Correlating Genotyping Data of Coxiella burnetii with Genomic Groups. Pathogens, 2021, 10, 604.	1.2	14
103	Identification of a Key Residue for Oligomerisation and Pore-Formation of Clostridium perfringens NetB. Toxins, 2014, 6, 1049-1061.	1.5	13
104	The Twin Arginine Translocation System Is Essential for Aerobic Growth and Full Virulence of Burkholderia thailandensis. Journal of Bacteriology, 2014, 196, 407-416.	1.0	13
105	From cell culture to cynomolgus macaque: infection models show lineage-specific virulence potential of Coxiella burnetii. Journal of Medical Microbiology, 2019, 68, 1419-1430.	0.7	13
106	Analysis of peptide mimotopes of Burkholderia pseudomallei exopolysaccharide. Vaccine, 2007, 25, 7796-7805.	1.7	12
107	Structure-Based Design of a B Cell Antigen from <i>B. pseudomallei</i> . ACS Chemical Biology, 2015, 10, 803-812.	1.6	12
108	The global impact and cost-effectiveness of a melioidosis vaccine. BMC Medicine, 2019, 17, 129.	2.3	11

#	Article	IF	CITATIONS
109	Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Research, 2020, 9, 1392.	0.8	11
110	Functional Analysis of the Role of Toxin–Antitoxin (TA) Loci in Bacterial Persistence. Methods in Molecular Biology, 2016, 1333, 121-129.	0.4	10
111	The molecular basis of protein toxin HicA–dependent binding of the protein antitoxin HicB to DNA. Journal of Biological Chemistry, 2018, 293, 19429-19440.	1.6	10
112	Clostridium perfringens Epsilon Toxin Compromises the Blood-Brain Barrier in a Humanized Zebrafish Model. IScience, 2019, 15, 39-54.	1.9	10
113	<i>Coxiella burnetii</i> replicates in <i>Galleria mellonella</i> hemocytes and transcriptome mapping reveals <i>in vivo</i> regulated genes. Virulence, 2020, 11, 1268-1278.	1.8	9
114	Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Research, 2020, 9, 1392.	0.8	9
115	A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis. Scientific Reports, 2017, 7, 41923.	1.6	8
116	Clostridium perfringens epsilon toxin vaccine candidate lacking toxicity to cells expressing myelin and lymphocyte protein. Npj Vaccines, 2019, 4, 32.	2.9	8
117	A proteasome inhibitor produced by Burkholderia pseudomallei modulates intracellular growth. Microbial Pathogenesis, 2017, 107, 175-180.	1.3	7
118	Campylobacter jejuni 11168H Exposed to Penicillin Forms Persister Cells and Cells With Altered Redox Protein Activity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 565975.	1.8	7
119	Functional redundancy of Burkholderia pseudomallei phospholipase C enzymes and their role in virulence. Scientific Reports, 2020, 10, 19242.	1.6	6
120	Efficient generation of a reshaped human mAb specific for the α toxin of Clostridium perfringens. Protein Engineering, Design and Selection, 1994, 7, 1501-1507.	1.0	5