
John Davison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471942/publications.pdf Version: 2024-02-01

ΙΟΗΝ ΠΑΥΙSON

#	Article	IF	CITATIONS
1	Plant diversity but not productivity is associated with community mycorrhization in temperate grasslands. Journal of Vegetation Science, 2022, 33, .	2.2	2
2	Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza, 2022, 32, 135-144.	2.8	14
3	Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and Biogeography, 2022, 31, 1120-1132.	5.8	19
4	Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022, 103, e3761.	3.2	11
5	Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecology Letters, 2021, 24, 426-437.	6.4	20
6	Spatial mapping of root systems reveals diverse strategies of soil exploration and resource contest in grassland plants. Journal of Ecology, 2021, 109, 652-663.	4.0	16
7	Userâ€friendly bioinformatics pipeline gDAT (graphical downstream analysis tool) for analysing rDNA sequences. Molecular Ecology Resources, 2021, 21, 1380-1392.	4.8	27
8	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
9	Towards a consistent benchmark for plant mycorrhizal association databases. New Phytologist, 2021, 231, 913-916.	7.3	12
10	Woody encroachment in grassland elicits complex changes in the functional structure of above―and belowground biota. Ecosphere, 2021, 12, e03512.	2.2	14
11	Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms, 2021, 9, 229.	3.6	19
12	Asymmetric patterns of global diversity among plants and mycorrhizal fungi. Journal of Vegetation Science, 2020, 31, 355-366.	2.2	20
13	Coâ€introduction of native mycorrhizal fungi and plant seeds accelerates restoration of postâ€mining landscapes. Journal of Applied Ecology, 2020, 57, 1741-1751.	4.0	33
14	Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE, 2020, 15, e0233878.	2.5	29
15	Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 2020, 226, 1117-1128.	7.3	69
16	Soil biota and chemical interactions promote coâ€existence in coâ€evolved grassland communities. Journal of Ecology, 2019, 107, 2611-2622.	4.0	8
17	Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza, 2019, 29, 263-275.	2.8	12
18	Nonâ€random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Molecular Ecology, 2019, 28, 365-378.	3.9	81

JOHN DAVISON

#	Article	IF	CITATIONS
19	Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Global Change Biology, 2018, 24, 2649-2659.	9.5	32
20	The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytologist, 2018, 220, 1236-1247.	7.3	68
21	Ancient environmental DNA reveals shifts in dominant mutualisms during the lateÂQuaternary. Nature Communications, 2018, 9, 139.	12.8	24
22	Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central Argentina. Applied Soil Ecology, 2018, 124, 289-297.	4.3	22
23	Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.	4.5	9
24	Largeâ€scale migrations of brown bears in Eurasia and to North America during the Late Pleistocene. Journal of Biogeography, 2018, 45, 394-405.	3.0	59
25	Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 2018, 3, 189-196.	13.3	136
26	Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4, eaau4578.	10.3	161
27	Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME Journal, 2018, 12, 2211-2224.	9.8	55
28	Arbuscular mycorrhizal fungal communities in tropical rain forest are resilient to slash-and-burn agriculture. Journal of Tropical Ecology, 2018, 34, 186-199.	1.1	17
29	Europeâ€wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox <i>Vulpes vulpes</i> : a quantitative review. Mammal Review, 2017, 47, 198-211.	4.8	71
30	Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography, 2017, 26, 690-699.	5.8	84
31	Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytologist, 2017, 216, 227-238.	7.3	66
32	Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2017, 27, 761-773.	2.8	58
33	Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped by host characteristics and canopy-mediated light availability. Plant and Soil, 2017, 410, 259-271.	3.7	38
34	Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of <i>Rhizophagus irregularis</i> and <i>Gigaspora margarita</i> is high and isolateâ€dependent. Molecular Ecology, 2016, 25, 2816-2832.	3.9	64
35	Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two continents. FEMS Microbiology Ecology, 2016, 92, fiw073.	2.7	41
36	Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology, 2016, 92, fiw097.	2.7	67

JOHN DAVISON

#	Article	IF	CITATIONS
37	Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecology, 2016, 24, 106-113.	1.6	87
38	Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland. FEMS Microbiology Ecology, 2016, 92, fiw186.	2.7	34
39	Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza, 2016, 26, 863-877.	2.8	50
40	Dispersal of arbuscular mycorrhizal fungi and plants during succession. Acta Oecologica, 2016, 77, 128-135.	1.1	41
41	AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa. Mycorrhiza, 2016, 26, 735-745.	2.8	28
42	Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biology and Biochemistry, 2016, 97, 63-70.	8.8	73
43	Response to Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism― Science, 2016, 351, 826-826.	12.6	17
44	Alien species and their zoonotic parasites in native and introduced ranges: The raccoon dog example. Veterinary Parasitology, 2016, 219, 24-33.	1.8	43
45	The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environmental Microbiology, 2015, 17, 2882-2895.	3.8	117
46	First report of highly pathogenic Echinococcus granulosus genotype G1 in dogs in a European urban environment. Parasites and Vectors, 2015, 8, 182.	2.5	35
47	Noninvasive Detection ofEchinococcus multilocularisTapeworm in Urban Area, Estonia. Emerging Infectious Diseases, 2015, 21, 163-164.	4.3	29
48	The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environmental Microbiology, 2015, 17, 2709-2720.	3.8	42
49	An Invasive Vector of Zoonotic Disease Sustained by Anthropogenic Resources: The Raccoon Dog in Northern Europe. PLoS ONE, 2014, 9, e96358.	2.5	40
50	Rapid Urbanization of Red Foxes in Estonia: Distribution, Behaviour, Attacks on Domestic Animals, and Health-Risks Related to Zoonotic Diseases. PLoS ONE, 2014, 9, e115124.	2.5	64
51	Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology, 2014, 90, 609-621.	2.7	138
52	DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany, 2014, 92, 135-147.	1.0	170
53	The Leinster and Cobbold indices improve inferences about microbial diversity. Fungal Ecology, 2014, 11, 1-7.	1.6	15
54	Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany, 2014, 92, 277-285.	1.0	86

JOHN DAVISON

#	Article	IF	CITATIONS
55	Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203, 233-244.	7.3	256
56	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	27.8	505
57	Impacts of Removing Badgers on Localised Counts of Hedgehogs. PLoS ONE, 2014, 9, e95477.	2.5	34
58	Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2013, 23, 411-430.	2.8	280
59	Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographical structure and migration patterns among brown bears in northâ€western Eurasia. Journal of Biogeography, 2013, 40, 915-927.	3.0	73
60	Arbuscular Mycorrhizal Fungal Networks Vary throughout the Growing Season and between Successional Stages. PLoS ONE, 2013, 8, e83241.	2.5	58
61	Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 2012, 87, 111-127.	10.4	717
62	Plant species richness belowground: higher richness and new patterns revealed by nextâ€generation sequencing. Molecular Ecology, 2012, 21, 2004-2016.	3.9	105
63	Communities of Arbuscular Mycorrhizal Fungi Detected in Forest Soil Are Spatially Heterogeneous but Do Not Vary throughout the Growing Season. PLoS ONE, 2012, 7, e41938.	2.5	150
64	Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography, 2011, 38, 1305-1317.	3.0	137
65	Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology, 2011, 78, 103-115.	2.7	183
66	Assessing spatiotemporal associations in the occurrence of badger–human conflict in England. European Journal of Wildlife Research, 2011, 57, 67-76.	1.4	7