Shikandar D Bukkitgar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics, 2019, 141, 111417.	10.1	300
2	Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids and Surfaces B: Biointerfaces, 2019, 178, 385-394.	5.0	156
3	Electrochemical Sensors and Biosensors Based on Graphene Functionalized with Metal Oxide Nanostructures for Healthcare Applications. ChemistrySelect, 2019, 4, 5322-5337.	1.5	140
4	Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode. Materials Science and Engineering C, 2016, 65, 262-268.	7.3	103
5	Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. Chemical Engineering Journal, 2021, 414, 128759.	12.7	100
6	Electro-Catalytic Behavior of Mg-Doped ZnO Nano-Flakes for Oxidation of Anti-Inflammatory Drug. Journal of the Electrochemical Society, 2019, 166, B3072-B3078.	2.9	88
7	Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. Journal of Molecular Liquids, 2020, 300, 112368.	4.9	79
8	Electro-sensing base for mefenamic acid on a 5% barium-doped zinc oxide nanoparticle modified electrode and its analytical application. RSC Advances, 2015, 5, 104891-104899.	3.6	76
9	Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. Chemical Engineering Journal, 2021, 420, 127575.	12.7	76
10	Fabrication of a TiO ₂ and clay nanoparticle composite electrode as a sensor. Analytical Methods, 2017, 9, 4387-4393.	2.7	74
11	Electrochemical oxidation of nimesulide in aqueous acid solutions based on TiO2 nanostructure modified electrode as a sensor. Journal of Electroanalytical Chemistry, 2016, 778, 103-109.	3.8	73
12	Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2016, 762, 37-42.	3.8	71
13	Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sensors and Actuators B: Chemical, 2018, 255, 1462-1470.	7.8	69
14	Electrochemical Sensor for the Determination of Anticancer Drug 5- Fluorouracil at Glucose Modified Electrode. ChemistrySelect, 2016, 1, 771-777.	1.5	55
15	Functional nanostructured metal oxides and its hybrid electrodes – Recent advancements in electrochemical biosensing applications. Microchemical Journal, 2020, 159, 105522.	4.5	50
16	Novel nanoclay-based electrochemical sensor for highly efficient electrochemical sensing nimesulide. Journal of Physics and Chemistry of Solids, 2020, 137, 109210.	4.0	45
17	Electrochemical behavior of anticancer drug 5-fluorouracil at carbon paste electrode and its analytical application. Journal of Analytical Science and Technology, 2016, 7, .	2.1	43
18	Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem, 2020, 23, 100183.	5.6	40

Shikandar D Bukkitgar

#	Article	IF	CITATIONS
19	Conventional and Nanotechnology-Based Sensing Methods for SARS Coronavirus (2019-nCoV). ACS Applied Bio Materials, 2021, 4, 1178-1190.	4.6	40
20	Electro-oxidation and determination of nimesulide at nanosilica modified sensor. Materials Science for Energy Technologies, 2019, 2, 396-400.	1.8	26
21	Electro-oxidation and determination of 2-thiouracil at TiO2 nanoparticles-modified gold electrode. Surfaces and Interfaces, 2017, 6, 127-133.	3.0	22
22	Electrochemical behavior of theophylline at methylene blue dye modified electrode and its analytical application. Materials Today: Proceedings, 2018, 5, 21474-21481.	1.8	16
23	Electrooxidation of antihistamine drug methdilazine and its analysis in human urine and blood samples. Cogent Chemistry, 2016, 2, 1153274.	2.5	9
24	Nano level detection and analysis of an antiviral drug at ZnO nanoparticles modified sensor. Materials Today: Proceedings, 2019, 18, 1568-1573.	1.8	9
25	Electrochemical oxidation of loop diuretic furosemide in aqueous acid medium and its analytical application. Cogent Chemistry, 2016, 2, 1152784.	2.5	7
26	Electrochemical Behavior of an Anti-Viral Drug Valacyclovir at Carbon Paste Electrode and Its Analytical Application. Russian Journal of Electrochemistry, 2018, 54, 760-768.	0.9	7
27	TiO2 nanoparticles modified sensor for theophylline drug. Materials Today: Proceedings, 2019, 18, 606-612.	1.8	7
28	Electroanalysis of 1,3–dimethylexanthine at zinc oxide nanoparticles modified electrode. Materials Today: Proceedings, 2019, 18, 590-595.	1.8	6
29	Electrochemical behavior of mefenamic acid at zinc oxide nanoparticles modified carbon paste electrode. Materials Today: Proceedings, 2018, 5, 21458-21465.	1.8	5
30	Applications of zinc oxide nanoparticles as an electrode modifier for ambroxol. Materials Today: Proceedings, 2019, 18, 963-967.	1.8	5
31	Nano-silica modified electrode as a sensor for the determination of mefenamic acid - A voltammetric sensor. Materials Today: Proceedings, 2018, 5, 21466-21473.	1.8	4
32	Nanostructured electrodes. , 2022, , 147-175.		2
33	Electroanalysis of theophylline at eriochrome black –T and graphite powder composite electrode. AIP Conference Proceedings, 2018, , .	0.4	1
34	Voltammetric sensor for secretolytic agent ambroxol at titanium dioxide nanoparticles modified electrode. Materials Today: Proceedings, 2019, 18, 941-946.	1.8	1
35	Nanosilica modified sensor for the electro-oxidation and determination of an antihistamine drug. Materials Today: Proceedings, 2019, 18, 1562-1567.	1.8	0