Liangti Qu

List of Publications by Citations

Source: https://exaly.com/author-pdf/2471835/liangti-qu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

338
papers

31,100
citations

80
h-index

9-index

351
ext. papers

26,185
ext. citations

13
avg, IF

1-index

#	Paper	IF	Citations
338	Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. <i>ACS Nano</i> , 2010 , 4, 1321-6	16.7	3349
337	Metal-free catalysts for oxygen reduction reaction. <i>Chemical Reviews</i> , 2015 , 115, 4823-92	68.1	1763
336	Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15-8	16.4	1623
335	An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. <i>Advanced Materials</i> , 2011 , 23, 776-80	24	1330
334	All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. <i>Advanced Materials</i> , 2013 , 25, 2326-31	24	912
333	Highly efficient solar vapour generation via hierarchically nanostructured gels. <i>Nature Nanotechnology</i> , 2018 , 13, 489-495	28.7	825
332	Atomically Thin Mesoporous Nanomesh of Graphitic CNIFor High-Efficiency Photocatalytic Hydrogen Evolution. <i>ACS Nano</i> , 2016 , 10, 2745-51	16.7	701
331	Graphene quantum dots: an emerging material for energy-related applications and beyond. <i>Energy and Environmental Science</i> , 2012 , 5, 8869	35.4	698
330	Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. <i>Advanced Materials</i> , 2013 , 25, 591-5	24	676
329	A versatile, ultralight, nitrogen-doped graphene framework. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11371-5	16.4	663
328	N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2230-4	16.4	638
327	Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. <i>ACS Nano</i> , 2017 , 11, 5087-5093	16.7	632
326	Facile fabrication of light, flexible and multifunctional graphene fibers. <i>Advanced Materials</i> , 2012 , 24, 1856-61	24	464
325	Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13934-9	16.4	394
324	Graphene-based smart materials. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	391
323	A Graphitic-C3N4 "Seaweed" Architecture for Enhanced Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11433-7	16.4	365
322	Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation. <i>Advanced Materials</i> , 2012 , 24, 5493-8	24	287

321	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. <i>Advanced Materials</i> , 2016 , 28, 8669-8674	24	283
320	Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. <i>Nanoscale</i> , 2013 , 5, 3428-34	7.7	274
319	A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. <i>Angewandte Chemie</i> , 2012 , 124, 11533-1	15,367	262
318	Direct Power Generation from a Graphene Oxide Film under Moisture. <i>Advanced Materials</i> , 2015 , 27, 4351-7	24	256
317	Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10482-6	16.4	238
316	Moisture-activated torsional graphene-fiber motor. <i>Advanced Materials</i> , 2014 , 26, 2909-13	24	237
315	An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano, 2010, 4, 6050-4	16.7	219
314	Tailored graphene systems for unconventional applications in energy conversion and storage devices. <i>Energy and Environmental Science</i> , 2015 , 8, 31-54	35.4	211
313	Electrochemical Growth of Polypyrrole Microcontainers. <i>Macromolecules</i> , 2003 , 36, 1063-1067	5.5	210
312	Efficient Metal-Free Electrocatalysts from N-Doped Carbon Nanomaterials: Mono-Doping and Co-Doping. <i>Advanced Materials</i> , 2019 , 31, e1805121	24	205
311	Functional graphene nanomesh foam. Energy and Environmental Science, 2014, 7, 1913	35.4	192
310	N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. <i>Angewandte Chemie</i> , 2016 , 128, 2270-2274	3.6	185
309	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-	-3,3,7,4	185
308	MnO 2 -modified hierarchical graphene fiber electrochemical supercapacitor. <i>Journal of Power Sources</i> , 2014 , 247, 32-39	8.9	184
307	Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1841-1846	13	183
306	One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4612-4619	13	182
305	Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. <i>Energy and Environmental Science</i> , 2016 , 9, 912-916	35.4	181
304	Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3317	13	179

303	All-in-one graphene fiber supercapacitor. <i>Nanoscale</i> , 2014 , 6, 6448-51	7.7	174
302	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12355	13	172
301	Bubble-Decorated Honeycomb-Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors. <i>Advanced Functional Materials</i> , 2015 , 25, 6545-6551	15.6	163
300	High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture. <i>Advanced Materials</i> , 2018 , 30, e1706805	24	159
299	Graphene fiber: a new material platform for unique applications. NPG Asia Materials, 2014, 6, e113-e11	310.3	158
298	Direct solar steam generation system for clean water production. <i>Energy Storage Materials</i> , 2019 , 18, 429-446	19.4	151
297	Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6761-6766	13	146
296	High-Density Monolith of N-Doped Holey Graphene for Ultrahigh Volumetric Capacity of Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502100	21.8	142
295	Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. <i>Scientific Reports</i> , 2013 , 3, 2065	4.9	140
294	Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10849-53	3 ^{16.4}	136
293	Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 19307-13	3.6	135
292	Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides. <i>ACS Nano</i> , 2018 , 12, 5221-5227	16.7	134
291	Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. <i>Nano Research</i> , 2015 , 8, 1718-1728	10	131
290	Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 561, 149-156	4.1	131
289	Graphene/graphitic carbon nitride hybrids for catalysis. <i>Materials Horizons</i> , 2017 , 4, 832-850	14.4	130
288	Graphene Platforms for Smart Energy Generation and Storage. <i>Joule</i> , 2018 , 2, 245-268	27.8	124
287	Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. <i>ACS Nano</i> , 2013 , 7, 2406-12	16.7	119
286	A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6320	13	118

(2017-2017)

285	Mesh-on-Mesh Graphitic-C3N4@Graphene for Highly Efficient Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2017 , 27, 1606352	15.6	115
284	Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. <i>Energy and Environmental Science</i> , 2018 , 11, 1730-1735	35.4	115
283	One Single Graphene Oxide Film for Responsive Actuation. ACS Nano, 2016, 10, 9529-9535	16.7	115
282	Stimulus-responsive graphene systems towards actuator applications. <i>Energy and Environmental Science</i> , 2013 , 6, 3520	35.4	115
281	High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. <i>Nano Energy</i> , 2018 , 46, 415-422	17.1	111
280	A Large-Area, Flexible, and Flame-Retardant Graphene Paper. <i>Advanced Functional Materials</i> , 2016 , 26, 1470-1476	15.6	105
279	Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams. <i>ACS Nano</i> , 2016 , 10, 1325-32	16.7	105
278	Graphene microtubings: controlled fabrication and site-specific functionalization. <i>Nano Letters</i> , 2012 , 12, 5879-84	11.5	104
277	Decoration of graphene network with metal B rganic frameworks for enhanced electrochemical capacitive behavior. <i>Carbon</i> , 2014 , 78, 231-242	10.4	103
276	Spontaneous, Straightforward Fabrication of Partially Reduced Graphene Oxide-Polypyrrole Composite Films for Versatile Actuators. <i>ACS Nano</i> , 2016 , 10, 4735-41	16.7	101
275	Preparation of Monolayer MoS Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS Targets in Water. <i>Scientific Reports</i> , 2017 , 7, 11182	4.9	99
274	Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15303-15309	13	95
273	Graphene Oxide Nanoribbon Assembly toward Moisture-Powered Information Storage. <i>Advanced Materials</i> , 2017 , 29, 1604972	24	94
272	Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. <i>Nature Communications</i> , 2019 , 10, 1512	17.4	93
271	An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8042-5	3.6	91
270	Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage. <i>ChemNanoMat</i> , 2015 , 1, 298-318	3.5	90
269	Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. <i>Nature Communications</i> , 2018 , 9, 4166	17.4	90
268	Ultrasensitive Pressure Sensor Based on an Ultralight Sparkling Graphene Block. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 22885-22892	9.5	89

267	Self-powered wearable graphene fiber for information expression. <i>Nano Energy</i> , 2017 , 32, 329-335	17.1	88
266	Dimension-tailored functional graphene structures for energy conversion and storage. <i>Nanoscale</i> , 2013 , 5, 3112-26	7.7	86
265	Series of in-fiber graphene supercapacitors for flexible wearable devices. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2547-2551	13	86
264	Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid). <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3170-3177	2.5	84
263	Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. <i>Carbon</i> , 2018 , 129, 95-103	10.4	84
262	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. <i>Energy and Environmental Science</i> , 2018 , 11, 559-565	35.4	82
261	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 19041-19046	16.4	82
260	Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. <i>Scientific Reports</i> , 2014 , 4, 5882	4.9	80
259	An efficient polymer moist-electric generator. Energy and Environmental Science, 2019, 12, 972-978	35.4	80
258	A Microstructured Graphene/Poly(N-isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16343-16347	16.4	80
257	Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators. <i>Accounts of Chemical Research</i> , 2017 , 50, 1663-1671	24.3	79
256	Three-dimensional graphene-polypyrrole hybrid electrochemical actuator. <i>Nanoscale</i> , 2012 , 4, 7563-8	7.7	79
255	Nitrogen-Doped Carbon Nanotube Aerogels for High-Performance ORR Catalysts. <i>Small</i> , 2015 , 11, 3903	3- B 1	78
254	Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. <i>Nanoscale</i> , 2015 , 7, 3035-42	7.7	74
253	Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules. <i>Small</i> , 2018 , 14, e1704473	11	73
252	A Graphitic-C3N4 BeaweedlArchitecture for Enhanced Hydrogen Evolution. <i>Angewandte Chemie</i> , 2015 , 127, 11595-11599	3.6	73
251	Reconstruction of Inherent Graphene Oxide Liquid Crystals for Large-Scale Fabrication of Structure-Intact Graphene Aerogel Bulk toward Practical Applications. <i>ACS Nano</i> , 2018 , 12, 11407-1141	6 ^{16.7}	73
250	Structure Design and Composition Engineering of Carbon-Based Nanomaterials for Lithium Energy Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 1903030	21.8	71

249	Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small, 2016, 12, 3229-34	11	71
248	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14951-5	16.4	70
247	Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength. <i>Advanced Functional Materials</i> , 2020 , 30, 1906996	15.6	70
246	Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. <i>Nano Energy</i> , 2017 , 41, 367-376	17.1	69
245	A powerful approach to functional graphene hybrids for high performance energy-related applications. <i>Energy and Environmental Science</i> , 2014 , 7, 3699-3708	35.4	68
244	Recent progress in graphene-based electrodes for flexible batteries. <i>Informa@OMaterilly</i> , 2020 , 2, 509-52	623.1	68
243	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. <i>Advanced Materials</i> , 2016 , 28, 3305-12	24	67
242	Self-Healing Graphene Oxide Based Functional Architectures Triggered by Moisture. <i>Advanced Functional Materials</i> , 2017 , 27, 1703096	15.6	66
241	Vapor-Activated Power Generation on Conductive Polymer. <i>Advanced Functional Materials</i> , 2016 , 26, 8784-8792	15.6	64
2 40	Integrated graphene systems by laser irradiation for advanced devices. <i>Nano Today</i> , 2017 , 12, 14-30	17.9	63
239	Environmentally responsive graphene systems. <i>Small</i> , 2014 , 10, 2151-64	11	62
238	A rationally-designed synergetic polypyrrole/graphene bilayer actuator. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4015		62
237	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. <i>Advanced Functional Materials</i> , 2018 , 28, 1705967	15.6	58
236	Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. <i>Energy and Environmental Science</i> , 2018 , 11, 2839-2845	35.4	58
235	Graphitic Carbon Nitride Nanoribbons: Graphene-Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution. <i>Angewandte Chemie</i> , 2014 , 126, 14154-14159	3.6	58
234	Crystalline oligopyrene nanowires with multicolored emission. <i>Chemical Communications</i> , 2004 , 2800-1	5.8	58
233	Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range. <i>Advanced Materials</i> , 2020 , 32, e1905875	24	58
232	Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. <i>Advanced Materials</i> , 2019 , 31, e1805705	24	57

231	Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors. <i>Small</i> , 2017 , 13, 1700371	11	56
230	Mask-Free Patterning of High-Conductivity Metal Nanowires in Open Air by Spatially Modulated Femtosecond Laser Pulses. <i>Advanced Materials</i> , 2015 , 27, 6238-43	24	55
229	Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots. <i>ACS Applied Materials & Dots amp; Interfaces</i> , 2017 , 9, 38170-38175	9.5	54
228	Heteroatom substituted and decorated graphene: preparation and applications. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 32077-98	3.6	54
227	All-region-applicable, continuous power supply of graphene oxide composite. <i>Energy and Environmental Science</i> , 2019 , 12, 1848-1856	35.4	53
226	Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. <i>Nano Energy</i> , 2018 , 45, 37-43	17.1	53
225	Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. <i>Electrochemistry Communications</i> , 2013 , 35, 49-52	5.1	52
224	Load-tolerant, highly strain-responsive graphene sheets. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2057		51
223	Unraveling the Charge Storage Mechanism of Ti3C2Tx MXene Electrode in Acidic Electrolyte. <i>ACS Energy Letters</i> , 2020 , 5, 2873-2880	20.1	51
222	Two-dimensional materials of group-IVA boosting the development of energy storage and conversion 2020 , 2, 54-71		50
221	Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13978		50
220	Graphene-Based Fibers: Recent Advances in Preparation and Application. <i>Advanced Materials</i> , 2020 , 32, e1901979	24	50
219	Gradient doped polymer nanowire for moistelectric nanogenerator. <i>Nano Energy</i> , 2018 , 46, 297-304	17.1	49
218	Highly Efficient Actuator of Graphene/Polydopamine Uniform Composite Thin Film Driven by Moisture Gradients. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600169	4.6	49
217	Monolithic graphene fibers for solid-phase microextraction. <i>Journal of Chromatography A</i> , 2013 , 1320, 27-32	4.5	49
216	Versatile Graphene Oxide Putty-Like Material. <i>Advanced Materials</i> , 2016 , 28, 10287-10292	24	49
215	Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19563-19569	13	49
214	Direct spinning of fiber supercapacitor. <i>Nanoscale</i> , 2016 , 8, 12113-7	7.7	48

(2019-2018)

21	Laser-Assisted Large-Scale Fabrication of All-Solid-State Asymmetrical Micro-Supercapacitor Array. Small, 2018 , 14, e1801809	11	46	
21:	Graphene quantum dots for energy storage and conversion: from fabrication to applications. Materials Chemistry Frontiers, 2020 , 4, 421-436	7.8	46	
21:	Stretchable supercapacitor at B0 CC. Energy and Environmental Science, 2021 , 14, 3075-3085	35.4	45	
210	O An aqueous ZnMnO2 rechargeable microbattery. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10926-1093	113	45	
20	Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. <i>ACS Applied Materials & Documents and Pro-Oxidant Properties and Pro-Oxidant Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxida Pro-Oxid</i>	9.5	44	
20	Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses. <i>Nanoscale</i> , 2015 , 7, 9694-702	7.7	44	
20	Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. <i>Nature Nanotechnology</i> , 2021 , 16, 811-819	28.7	44	
20	Hybrid Energy Storage Device: Combination of Zinc-Ion Supercapacitor and Zinc-Air Battery in Mild Electrolyte. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 7239-7248	9.5	43	
20	A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. <i>Nano Research</i> , 2019 , 12, 1199-1206	10	41	
2 O.	Shape-Controllable Gold Nanoparticle-MoS Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS via Temporally Shaped Femtosecond Pulses. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 7447-7455	9.5	40	
20	3 Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020 , 14, 10471-10479	16.7	40	
20	Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO2 nanowires. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6766-6772	13	40	
20	Laser-Assisted Multiscale Fabrication of Configuration-Editable Supercapacitors with High Energy Density. <i>ACS Nano</i> , 2019 , 13, 7463-7470	16.7	39	
20	O Flexible and integrated supercapacitor with tunable energy storage. <i>Nanoscale</i> , 2017 , 9, 12324-12329	7.7	39	
19	9 Electrochemical synthesis of novel polypyrrole microstructures. <i>Chemical Communications</i> , 2003 , 206-7	5.8	39	
19	Metal (Ag, Pt)MoS2 Hybrids Greenly Prepared Through Photochemical Reduction of Femtosecond Laser Pulses for SERS and HER. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7704-7714	8.3	38	
19	Electric power generation using paper materials. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20574-20578	813	37	
19	Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. <i>Nature Communications</i> , 2019 , 10, 2855	17.4	37	

195	Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. <i>RSC Advances</i> , 2012 , 2, 2154	3.7	37
194	Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications. <i>ACS Nano</i> , 2011 , 5, 994-1002	16.7	37
193	InP and Sn:InP based quantum dot sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2192	2 <u>12</u> ,192	2936
192	Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 11, 30927-30935	9.5	36
191	A smart, anti-piercing and eliminating-dendrite lithium metal battery. <i>Nano Energy</i> , 2018 , 49, 403-410	17.1	35
190	Moist-electric generation. <i>Nanoscale</i> , 2019 , 11, 23083-23091	7.7	35
189	Wearable fiberform hygroelectric generator. <i>Nano Energy</i> , 2018 , 53, 698-705	17.1	35
188	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14541-14549	16.4	34
187	Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. <i>Nature Communications</i> , 2020 , 11, 6185	17.4	34
186	A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19463-19469	13	34
185	Controllable Synthesis of Nanosized Amorphous MoSx Using Temporally Shaped Femtosecond Laser for Highly Efficient Electrochemical Hydrogen Production. <i>Advanced Functional Materials</i> , 2019 , 29, 1806229	15.6	33
184	Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. <i>Chemical Science</i> , 2019 , 10, 1244-1253	9.4	32
183	One-pot Synthesis of Nitrogen and Phosphorus Co-doped Graphene and Its Use as High-performance Electrocatalyst for Oxygen Reduction Reaction. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 2609-14	4.5	32
182	Performance of graphene sheets as stationary phase for capillary gas chromatographic separations. Journal of Chromatography A, 2015, 1399, 74-9	4.5	32
181	Fabrication of highly hydrophobic surfaces of conductive polythiophene. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2858		32
180	Salty Ice Electrolyte with Superior Ionic Conductivity Towards Low-Temperature Aqueous Zinc Ion Hybrid Capacitors. <i>Advanced Functional Materials</i> , 2021 , 31, 2101277	15.6	32
179	Superelastic, Macroporous Polystyrene-Mediated Graphene Aerogels for Active Pressure Sensing. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1071-5	4.5	32
178	Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. <i>Angewandte Chemie</i> , 2016 , 128, 11007-11011	3.6	32

(2014-2017)

177	Ultra-high toughness all graphene fibers derived from synergetic effect of interconnected graphene ribbons and graphene sheets. <i>Carbon</i> , 2017 , 120, 17-22	10.4	31
176	A Responsive Battery with Controlled Energy Release. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14643-14647	16.4	31
175	Highly Ordered Graphene Solid: An Efficient Platform for Capacitive Sodium-Ion Storage with Ultrahigh Volumetric Capacity and Superior Rate Capability. <i>ACS Nano</i> , 2019 , 13, 9161-9170	16.7	31
174	Flexible and high-performance microsupercapacitors with wide temperature tolerance. <i>Nano Energy</i> , 2019 , 64, 103938	17.1	31
173	Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation. <i>Light: Science and Applications</i> , 2020 , 9, 80	16.7	31
172	(111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 38066-38072	9.5	31
171	Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 24608-24615	9.5	30
170	Graphitic C3N4-Pt nanohybrids supported on a graphene network for highly efficient methanol oxidation. <i>Science China Materials</i> , 2015 , 58, 21-27	7.1	30
169	Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers. <i>Journal of Chromatography A</i> , 2016 , 1460, 173-80	4.5	30
168	Uniquely arranged graphene-on-graphene structure as a binder-free anode for high-performance lithium-ion batteries. <i>Small</i> , 2014 , 10, 5035-41	11	30
167	A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. <i>Nature Communications</i> , 2021 , 12, 2647	17.4	30
166	Trash to treasure: converting plastic waste into a useful graphene foil. <i>Nanoscale</i> , 2017 , 9, 9089-9094	7-7	29
165	Processing and manufacturing of graphene-based microsupercapacitors. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1750-1764	7.8	29
164	Superplastic Air-Dryable Graphene Hydrogels for Wet-Press Assembly of Ultrastrong Superelastic Aerogels with Infinite Macroscale. <i>Advanced Functional Materials</i> , 2019 , 29, 1901917	15.6	28
163	Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5617-5627	13	28
162	Glucose oxidase electrodes based on microstructured polypyrrole films. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 2550-2554	2.9	28
161	Progress in the Understanding and Applications of the Intrinsic Reactivity of Graphene-Based Materials. <i>Small Science</i> , 2021 , 1, 2000026		28
160	Preparation of multifunctional microchannel-network graphene foams. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16786-16792	13	27

159	Controllable localization of carbon nanotubes on the holey edge of graphene: an efficient oxygen reduction electrocatalyst for ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18240-18247	13	27
158	A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. <i>Electrochemistry Communications</i> , 2016 , 72, 122-125	5.1	27
157	Polymer/Graphene Hybrids for Advanced Energy-Conversion and -Storage Materials. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1151-68	4.5	26
156	Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS defect sites for photoluminescence control and SERS enhancement. <i>Nanoscale</i> , 2019 , 11, 485-494	7.7	25
155	Cylindrically Focused Nonablative Femtosecond Laser Processing of Long-Range Uniform Periodic Surface Structures with Tunable Diffraction Efficiency. <i>Advanced Optical Materials</i> , 2019 , 7, 1900706	8.1	25
154	Versatile origami micro-supercapacitors array as a wind energy harvester. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19750-19756	13	25
153	A versatile, superelastic polystyrene/graphene capsule-like framework. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10118-10123	13	24
152	Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films. <i>Scientific Reports</i> , 2015 , 5, 17557	4.9	24
151	Transparent, self-healing, arbitrary tailorable moist-electric film generator. <i>Nano Energy</i> , 2020 , 67, 104	2 3 8.1	24
150	A 2D free-standing film-inspired electrocatalyst for highly efficient hydrogen production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12027-12033	13	23
149	Interactions between Graphene-Based Materials and Water Molecules toward Actuator and Electricity-Generator Applications. <i>Small Methods</i> , 2018 , 2, 1800108	12.8	23
148	Metal/graphene oxide batteries. <i>Carbon</i> , 2017 , 125, 299-307	10.4	23
147	Electrochemical fabrication of polythiophene film coated metallic nanowire arrays. <i>Journal of Materials Science</i> , 2003 , 38, 2423-2427	4.3	23
146	Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. <i>Carbon</i> , 2016 , 106, 9-19	10.4	23
145	Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. <i>Nanophotonics</i> , 2019 , 8, 869-878	6.3	22
144	The First Flexible Dual-Ion Microbattery Demonstrates Superior Capacity and Ultrahigh Energy Density: Small and Powerful. <i>Advanced Functional Materials</i> , 2020 , 30, 2002086	15.6	22
143	Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance. <i>Advanced Science</i> , 2020 , 7, 1903125	13.6	21
142	Graphene Fibers with Predetermined Deformation as Moisture-Triggered Actuators and Robots. <i>Angewandte Chemie</i> , 2013 , 125, 10676-10680	3.6	21

(2015-2020)

141	Compact Assembly and Programmable Integration of Supercapacitors. <i>Advanced Materials</i> , 2020 , 32, e1907005	24	21
140	Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. <i>ACS Nano</i> , 2020 , 14, 14929-14938	16.7	21
139	Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly. <i>Materials Today</i> , 2016 , 19, 146-156	21.8	21
138	Janus-interface engineering boosting solar steam towards high-efficiency water collection. <i>Energy</i> and Environmental Science,	35.4	21
137	Coupling interconnected MoO/WO nanosheets with a graphene framework as a highly efficient anode for lithium-ion batteries. <i>Nanoscale</i> , 2017 , 10, 396-402	7.7	21
136	A linear graphene edge nanoelectrode. <i>Chemical Communications</i> , 2015 , 51, 8765-8	5.8	20
135	A dually spontaneous reduction and assembly strategy for hybrid capsules of graphene quantum dots with platinumlopper nanoparticles for enhanced oxygen reduction reaction. <i>Carbon</i> , 2014 , 74, 170-179	10.4	20
134	Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors. <i>ACS Applied Materials & Discrete Supercapacitors</i> , 9, 24840-24845	9.5	19
133	All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2021 ,	16.7	19
132	Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers. <i>Advanced Energy Materials</i> , 2021 , 11, 2003982	21.8	19
131	Functional Carbon Nanomesh Clusters. Advanced Functional Materials, 2017, 27, 1701514	15.6	18
130	A directly swallowable and ingestible micro-supercapacitor. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4055-4061	13	18
129	Miniaturized high-performance metallic 1T-Phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. <i>Nano Energy</i> , 2020 , 67, 104260	17.1	18
128	Emerging Materials for Water-Enabled Electricity Generation 2021 , 3, 193-209		18
127	Sunlight-Driven Water Transport via a Reconfigurable Pump. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15435-15440	16.4	18
126	Wall-Mesoporous Graphitic Carbon Nitride Nanotubes for Efficient Photocatalytic Hydrogen Evolution. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3160-3164	4.5	18
125	Power generation from graphene-water interactions. FlatChem, 2019, 14, 100090	5.1	17
124	Chromatographic selectivity of graphene capillary column pretreated with bio-inspired polydopamine polymer. <i>RSC Advances</i> , 2015 , 5, 74040-74045	3.7	17

123	Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting. <i>Nanoscale</i> , 2020 , 12, 13484-13490	7.7	17
122	Highly crumpled nanocarbons as efficient metal-free electrocatalysts for zinc-air batteries. <i>Nanoscale</i> , 2018 , 10, 15706-15713	7.7	17
121	A 3D-graphene fiber electrode embedded with nitrogen-rich-carbon-coated ZIF-67 for the ultrasensitive detection of adrenaline. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5291-5295	7.3	17
120	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. <i>Angewandte Chemie</i> , 2019 , 131, 19217-19222	3.6	17
119	A versatile graphene foil. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14508-14513	13	16
118	Tunable Graphene Systems for Water Desalination. <i>ChemNanoMat</i> , 2020 , 6, 1028-1048	3.5	16
117	Frontiers of carbon materials as capacitive deionization electrodes. <i>Dalton Transactions</i> , 2020 , 49, 5006	-540314	16
116	A respiration-detective graphene oxide/lithium battery. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1915	4-11;915	916
115	Direct electrochemical generation of conducting polymer microcontainers on silicon substrate. <i>Polymer International</i> , 2004 , 53, 2125-2129	3.3	16
114	The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 3112-3121	3.6	16
113	Hybrid superhydrophilic-superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection. <i>Microsystems and Nanoengineering</i> , 2019 , 5, 48	7.7	15
112	A Responsive Battery with Controlled Energy Release. <i>Angewandte Chemie</i> , 2016 , 128, 14863-14867	3.6	15
111	An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10945-10952	13	15
110	Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 535-547	3.5	14
109	High performance broadband acoustic absorption and sound sensing of a bubbled graphene monolith. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11423-11429	13	14
108	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. <i>Angewandte Chemie</i> , 2020 , 132, 14649-14657	3.6	14
107	Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. <i>Nanophotonics</i> , 2020 , 9, 691-702	6.3	14
106	A Novel EGlucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3Mono-Ed-Glucuronide. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	14

105	2D Graphene-Based Macroscopic Assemblies for Micro-Supercapacitors. <i>ChemSusChem</i> , 2020 , 13, 1255-	122.734	14
104	Laser fabrication of functional micro-supercapacitors. <i>Journal of Energy Chemistry</i> , 2021 , 59, 642-665	12	14
103	Hierarchical ZnO@Hybrid Carbon Core-Shell Nanowire Array on a Graphene Fiber Microelectrode for Ultrasensitive Detection of 2,4,6-Trinitrotoluene. <i>ACS Applied Materials & Company: Interfaces</i> , 2020 , 12,8547-8554	9.5	13
102	Multifunctional 3D Micro-Nanostructures Fabricated through Temporally Shaped Femtosecond Laser Processing for Preventing Thrombosis and Bacterial Infection. <i>ACS Applied Materials & Materials & Interfaces</i> , 2020 , 12, 17155-17166	9.5	13
101	Wood-inspired multi-channel tubular graphene network for high-performance lithium-sulfur batteries. <i>Carbon</i> , 2018 , 139, 522-530	10.4	13
100	Carbon nanotubellanopipe composite vertical arrays for enhanced electrochemical capacitance. <i>Carbon</i> , 2013 , 64, 507-515	10.4	13
99	Shock induced conversion of carbon dioxide to few layer graphene. <i>Carbon</i> , 2017 , 115, 471-476	10.4	13
98	Graphitic carbon nitride nanofibers in seaweed-like architecture for gas chromatographic separations. <i>Journal of Chromatography A</i> , 2017 , 1496, 133-140	4.5	12
97	Femtosecond laser mediated fabrication of micro/nanostructured TiO2- photoelectrodes: Hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119231	21.8	12
96	Reborn Three-Dimensional Graphene with Ultrahigh Volumetric Desalination Capacity. <i>Advanced Materials</i> , 2021 , 33, e2105853	24	12
95	A three-dimensional hollow graphene fiber microelectrode with shrink-effect-enabled enzyme immobilization for sensor applications. <i>Science Bulletin</i> , 2019 , 64, 718-722	10.6	11
94	Re-shaping graphene hydrogels for effectively enhancing actuation responses. <i>Nanoscale</i> , 2015 , 7, 1237	⁷ 2/- 8	11
93	Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions. <i>ACS Nano</i> , 2020 , 14, 6249-6257	16.7	11
92	Solution-processed MoS2 nanotubes/reduced graphene oxide nanocomposite as an active electrocatalyst toward the hydrogen evolution reaction. <i>RSC Advances</i> , 2016 , 6, 70740-70746	3.7	11
91	A graphene-based porous carbon material as a stationary phase for gas chromatographic separations. <i>RSC Advances</i> , 2017 , 7, 32126-32132	3.7	11
90	Few-Layer Siloxene as an Electrode for Superior High-Rate Zinc Ion Hybrid Capacitors. <i>ACS Energy Letters</i> , 2021 , 6, 1786-1794	20.1	11
89	From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. <i>Energy Storage Materials</i> , 2021 , 35, 327-3	33 ^{.4}	11
88	Polymorph-Controlled Crystallization of Acetaminophen through Femtosecond Laser Irradiation. <i>Crystal Growth and Design</i> , 2019 , 19, 3265-3271	3.5	10

87	Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors <i>Advanced Materials</i> , 2022 , e2110013	24	10
86	An Aqueous Anti-Freezing and Heat-Tolerant Symmetric Microsupercapacitor with 2.3 (V) Output Voltage. <i>Advanced Energy Materials</i> , 2021 , 11, 2101523	21.8	10
85	Graphene Oxide Assemblies for Sustainable Clean-Water Harvesting and Green-Electricity Generation. <i>Accounts of Materials Research</i> , 2021 , 2, 97-107	7.5	10
84	MEG actualized by high-valent metal carrier transport. <i>Nano Energy</i> , 2019 , 65, 104047	17.1	9
83	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. <i>Angewandte Chemie</i> , 2015 , 127, 15164-15168	3.6	9
82	Novel route to poly(p-phenylene vinylene) polymers. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 449-4	5 5 .5	9
81	Sunlight-coordinated high-performance Moisture Power in Natural Condition <i>Advanced Materials</i> , 2021 , e2103897	24	9
80	Sunlight-Driven Water Transport via a Reconfigurable Pump. <i>Angewandte Chemie</i> , 2018 , 130, 15661-15	6666	9
79	Moisture adsorption-desorption full cycle power generation <i>Nature Communications</i> , 2022 , 13, 2524	17.4	9
78	Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. <i>Science China Materials</i> , 2020 , 63, 1300-1309	7.1	8
77	Regulation of 2D Graphene Materials for Electrocatalysis. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2271-2	22 8 \$	8
76	Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 111, 813-8	1 2 .6	8
75	Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors. <i>Frontiers of Materials Science</i> , 2019 , 13, 145-153	2.5	7
74	Separation performance of graphene oxide as stationary phase for capillary gas chromatography. <i>Chinese Chemical Letters</i> , 2015 , 26, 47-49	8.1	7
73	Detection of epinephrine and metanephrine at a nitrogen doped three-dimensional porous graphene modified electrode. <i>Analytical Methods</i> , 2015 , 7, 10394-10402	3.2	7
72	Scalable Conversion of CO2 to N-Doped Carbon Foam for Efficient Oxygen Reduction Reaction and Lithium Storage. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3358-3366	8.3	7
71	A Cut-Resistant and Highly Restorable Graphene Foam. Small, 2018, 14, e1801916	11	7
70	Nonlinear ionization mechanism dependence of energy absorption in diamond under femtosecond laser irradiation. <i>Journal of Applied Physics</i> , 2013 , 113, 143106	2.5	7

69	Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3595		7
68	Femtosecond Laser Induced Phase Transformation of TiO with Exposed Reactive Facets for Improved Photoelectrochemistry Performance. <i>ACS Applied Materials & Description</i> , 12, 41250	-47258	37
67	Functional group defect design in polymeric carbon nitride for photocatalytic application. <i>APL Materials</i> , 2020 , 8, 120703	5.7	7
66	Planar Graphene-Based Microsupercapacitors. <i>Small</i> , 2021 , 17, e2006827	11	7
65	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. <i>Advanced Materials</i> , 2021 , 33, e2105480	24	7
64	Ultrafast response of dielectric properties of monolayer phosphorene to femtosecond laser. Journal of Applied Physics, 2017 , 121, 173105	2.5	6
63	An Ultrafast Supercapacitor Based on 3D Ordered Porous Graphene Film with AC Line Filtering Performance. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5182-5189	6.1	6
62	Tunable assembly of carbon nanospheres on single-walled carbon nanotubes. <i>Nanotechnology</i> , 2010 , 21, 305602	3.4	6
61	A Self-healing Zinc Ion Battery under -20 LC. Energy Storage Materials, 2021,	19.4	6
60	Conjugated Polymers as Hole Transporting Materials for Solar Cells. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2020 , 38, 449-458	3.5	6
59	The Emerging of Aqueous Zinc-Based Dual Electrolytic Batteries. <i>Small</i> , 2021 , 17, e2008043	11	6
58	Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions <i>Nature Communications</i> , 2022 , 13, 1863	17.4	6
57	An intelligent film actuator with multi-level deformation behaviour. <i>Nanoscale Horizons</i> , 2020 , 5, 1226-1	232 8	5
56	Stepwise assembled nickellobalt-hydroxide hetero-accumulated nanocrystalline walls on reduced graphene oxide/nickel foams: an adjustable interface design for capacitive charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4894-4898	13	5
55	Dimensional confinement of graphene in a polypyrrole microbowl for sensor applications. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5733-5737	7.3	5
54	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures,2100124	8.7	5
53	Interface-enhanced distillation beyond tradition based on well-arranged graphene membrane. <i>Science China Materials</i> , 2020 , 63, 1948-1956	7.1	5
52	A Microstructured Graphene/Poly(N-isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. <i>Angewandte Chemie</i> , 2018 , 130, 16581-16585	3.6	5

51	Mechanism of Nitrogen-Doped TiC Quantum Dots for Free-Radical Scavenging and the Ultrasensitive HO Detection Performance. <i>ACS Applied Materials & Detection Performance</i> , 13, 42442-424	.5 0 ⋅5	5
50	A hierarchical heterojunction polymer aerogel for accelerating charge transfer and separation. Journal of Materials Chemistry A, 2021 , 9, 7881-7887	13	5
49	Recent advances in highly integrated energy conversion and storage system. SusMat,		5
48	Dry adhesion of polythiophene nanotube arrays with drag-induced direction dependence. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 4047-4053	2.9	4
47	Proton-conducting gel polyelectrolytes based on Lewis acid. <i>Journal of Applied Polymer Science</i> , 2003 , 90, 1267-1272	2.9	4
46	Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. <i>Nano Energy</i> , 2022 , 107017	17.1	4
45	2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application. <i>ACS Nano</i> , 2021 , 15, 16533-16541	16.7	4
44	The Advance and Perspective on Electrode Materials for Metallon Hybrid Capacitors. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100022	1.6	4
43	Vertical Graphene Arrays as Electrodes for Ultra-High Energy Density AC Line-Filtering Capacitors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24505-24509	16.4	4
42	Grain Boundary Design of Solid Electrolyte Actualizing Stable All-Solid-State Sodium Batteries. <i>Small</i> , 2021 , 17, e2103819	11	4
41	Ultra-small dispersed Cu O nanoparticles on graphene fibers for miniaturized electrochemical sensor applications <i>RSC Advances</i> , 2019 , 9, 28207-28212	3.7	3
40	Tunable-Deformed Graphene Layers for Actuation. Frontiers in Chemistry, 2019, 7, 725	5	3
39	Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. <i>Nano Materials Science</i> , 2022 ,	10.2	3
38	Bridged Carbon Fabric Membrane with Boosted Performance in AC Line-Filtering Capacitors <i>Advanced Science</i> , 2022 , e2105072	13.6	3
37	A Flexible Aqueous Zinc-Iodine Micro-battery with Unprecedented Energy Density <i>Advanced Materials</i> , 2022 , e2109450	24	3
36	One-step synthesis of hierarchical Ni3Se2 nanosheet-on-nanorods/Ni foam electrodes for hybrid supercapacitors. <i>Chinese Chemical Letters</i> , 2021 , 33, 475-475	8.1	3
35	Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach. <i>Nanoscale Horizons</i> , 2021 , 6, 341-347	10.8	3
34	Moisture Power in Natural Polymeric Silk Fibroin Flexible Membrane Triggers Efficient Antibacterial Activity of Silver Nanoparticles. <i>Nano Energy</i> , 2021 , 106529	17.1	3

33	Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 1272-1276	4.5	2	
32	A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets. <i>Frontiers of Materials Science</i> , 2018 , 12, 105-117	2.5	2	
31	Frequency dependence of electron dynamics during femtosecond laser resonant photoionization of Li4 cluster. <i>Journal of Applied Physics</i> , 2013 , 114, 143105	2.5	2	
30	Bioinspired Surfaces I: Gecko-Foot Mimetic Adhesion 2012 , 251-291		2	
29	Electrochemical polymerization of Ehaphthalene sulfonic acid. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 1939-1944	2.9	2	
28	High-performance flexible and integratable MEG devices from sulfonated carbon solid acids containing strong Brfisted acid sites. <i>Journal of Materials Chemistry A</i> ,	13	2	
27	Custom-Built Graphene Acoustic-Absorbing Aerogel for Audio Signal Recognition. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100227	4.6	2	
26	Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, 2101020-0	3.8	2	
25	Controllable Photonic Structures on Silicon-on-Insulator Devices Fabricated Using Femtosecond Laser Lithography. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 43622-43631	9.5	2	
24	Conductive Writing with High Precision by Laser-Induced Point-to-Line Carbonization Strategy for Flexible Supercapacitors. <i>Advanced Optical Materials</i> ,2100793	8.1	2	
23	Graphene Ionogel Ultra-Fast Filter Supercapacitor with 4½ Workable Window and 150 ½ Operable Temperature <i>Small</i> , 2022 , e2200916	11	2	
22	Hydrodynamic simulation of ultrashort pulse laser ablation of gold film. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 119, 1047-1052	2.6	1	
21	Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory. <i>Applied Physics A: Materials Science and Processing</i> , 2017 , 123, 1	2.6	1	
20	Innentitelbild: A Versatile, Ultralight, Nitrogen-Doped Graphene Framework (Angew. Chem. 45/2012). <i>Angewandte Chemie</i> , 2012 , 124, 11336-11336	3.6	1	
19	Planar Graphene-Based Microsupercapacitors (Small 48/2021). Small, 2021, 17, 2170254	11	1	
18	Biomimetic Antigravity Water Transport and Remote Harvesting Powered by Sunlight. <i>Global Challenges</i> , 2020 , 4, 2000043	4.3	1	
17	Hygroelectric Generators: Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators (Adv. Mater. 2/2019). <i>Advanced Materials</i> , 2019 , 31, 1970013	24	1	
16	Biomimetic Graphite Foils with High Foldability and Conductivity. <i>Small Methods</i> , 2019 , 3, 1800282	12.8	1	

15	The promising solar-powered water purification based on graphene functional architectures. <i>EcoMat</i> ,	9.4	1
14	Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 1216-1229	11.3	1
13	A facile laser assisted paste-tear approach to large area, flexible and wearable in-plane micro-supercapacitors. <i>Journal of Power Sources</i> , 2022 , 532, 231346	8.9	1
12	A versatile, heat-resisting, electrocatalytic active graphene framework by in-situ formation of boron nitride quantum dots. <i>Carbon</i> , 2022 , 192, 123-132	10.4	1
11	Pure Aqueous Planar Microsupercapacitors with Ultrahigh Energy Density under Wide Temperature Ranges. <i>Advanced Functional Materials</i> ,2203270	15.6	1
10	Laser-Based Growth and Treatment of Graphene for Advanced Photo- and Electro-Related Device Applications. <i>Advanced Functional Materials</i> ,2203164	15.6	1
9	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, 227	70 00 94	0
8	Carbon-Based, Metal-Free Catalysts for Photocatalysis 2018 , 457-500		Ο
7	Asymmetrical Micro-Supercapacitors: Laser-Assisted Large-Scale Fabrication of All-Solid-State Asymmetrical Micro-Supercapacitor Array (Small 37/2018). <i>Small</i> , 2018 , 14, 1870171	11	0
6	Binary active sites of nickel i ron alloy bonded in nitrogen-doped carbon nanocage for robust durability and low polarization zinc-air batteries. <i>Journal of Power Sources</i> , 2022 , 538, 231563	8.9	0
5	Axial heterostructure nanoarray as all-solid-state micro-supercapacitors. <i>International Journal of Energy Research</i> , 2019 , 43, 6013-6025	4.5	
4	Znß Hybrid Batteries: Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers (Adv. Energy Mater. 14/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 217005	52 ^{21.8}	
3	Titelbild: A Microstructured Graphene/Poly(N-isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation (Angew. Chem. 50/2018). <i>Angewandte Chemie</i> , 2018 , 130, 16471-16471	3.6	
2	An efficient and versatile biopolishing strategy to construct high performance zinc anode. <i>Nano Research</i> ,1	10	
1	Conductive Writing with High Precision by Laser-Induced Point-to-Line Carbonization Strategy for Flexible Supercapacitors (Advanced Optical Materials 24/2021). <i>Advanced Optical Materials</i> , 2021 , 9, 21	78 1 02	