List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471835/publications.pdf Version: 2024-02-01

338 papers	41,140 citations	2795 94 h-index	²⁶⁷⁵ 193 g-index
351 all docs	351 docs citations	351 times ranked	34188 citing authors

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	7.3	3,658
2	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
3	Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society, 2012, 134, 15-18.	6.6	1,832
4	An Electrochemical Avenue to Greenâ€Luminescent Graphene Quantum Dots as Potential Electronâ€Acceptors for Photovoltaics. Advanced Materials, 2011, 23, 776-780.	11.1	1,466
5	Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13, 489-495.	15.6	1,356
6	Allâ€Graphene Coreâ€5heath Microfibers for Allâ€5olidâ€5tate, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Advanced Materials, 2013, 25, 2326-2331.	11.1	1,007
7	Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano, 2017, 11, 5087-5093.	7.3	871
8	Atomically Thin Mesoporous Nanomesh of Graphitic C ₃ N ₄ for High-Efficiency Photocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 2745-2751.	7.3	866
9	Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy and Environmental Science, 2012, 5, 8869.	15.6	790
10	N,P odoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie - International Edition, 2016, 55, 2230-2234.	7.2	748
11	Highly Compressionâ€Tolerant Supercapacitor Based on Polypyrroleâ€mediated Graphene Foam Electrodes. Advanced Materials, 2013, 25, 591-595.	11.1	745
12	A Versatile, Ultralight, Nitrogenâ€Đoped Graphene Framework. Angewandte Chemie - International Edition, 2012, 51, 11371-11375.	7.2	731
13	Graphene-based smart materials. Nature Reviews Materials, 2017, 2, .	23.3	569
14	Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers. Advanced Materials, 2012, 24, 1856-1861.	11.1	524
15	Graphitic Carbon Nitride Nanoribbons: Grapheneâ€Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 13934-13939.	7.2	470
16	A Graphitic ₃ N ₄ "Seaweed―Architecture for Enhanced Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 11433-11437.	7.2	433
17	Direct Power Generation from a Graphene Oxide Film under Moisture. Advanced Materials, 2015, 27, 4351-4357.	11.1	418
18	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. Advanced Materials, 2016, 28, 8669-8674.	11.1	349

#	Article	IF	CITATIONS
19	Efficient Metalâ€Free Electrocatalysts from Nâ€Doped Carbon Nanomaterials: Monoâ€Doping and Coâ€Doping. Advanced Materials, 2019, 31, e1805121.	11.1	329
20	Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5, 3428.	2.8	307
21	Newlyâ€Designed Complex Ternary Pt/PdCu Nanoboxes Anchored on Threeâ€Dimensional Graphene Framework for Highly Efficient Ethanol Oxidation. Advanced Materials, 2012, 24, 5493-5498.	11.1	301
22	Graphene Fibers with Predetermined Deformation as Moistureâ€Triggered Actuators and Robots. Angewandte Chemie - International Edition, 2013, 52, 10482-10486.	7.2	294
23	Moistureâ€Activated Torsional Grapheneâ€Fiber Motor. Advanced Materials, 2014, 26, 2909-2913.	11.1	292
24	Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy and Environmental Science, 2016, 9, 912-916.	15.6	289
25	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-3374.	15.6	263
26	An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator. ACS Nano, 2010, 4, 6050-6054.	7.3	242
27	Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules, 2003, 36, 1063-1067.	2.2	234
28	Direct solar steam generation system for clean water production. Energy Storage Materials, 2019, 18, 429-446.	9.5	234
29	One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. Journal of Materials Chemistry A, 2015, 3, 4612-4619.	5.2	232
30	Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 2015, 8, 31-54.	15.6	232
31	Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. Journal of Materials Chemistry A, 2015, 3, 1841-1846.	5.2	229
32	N,P odoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie, 2016, 128, 2270-2274.	1.6	224
33	High Rate Production of Clean Water Based on the Combined Photoâ€Electroâ€Thermal Effect of Graphene Architecture. Advanced Materials, 2018, 30, e1706805.	11.1	214
34	Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. Journal of Materials Chemistry A, 2014, 2, 3317.	5.2	208
35	Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nature Communications, 2018, 9, 4166.	5.8	208
36	MnO 2 -modified hierarchical graphene fiber electrochemical supercapacitor. Journal of Power Sources, 2014, 247, 32-39.	4.0	207

#	Article	IF	CITATIONS
37	Functional graphene nanomesh foam. Energy and Environmental Science, 2014, 7, 1913.	15.6	206
38	All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6, 6448.	2.8	204
39	Electric power generation <i>via</i> asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy and Environmental Science, 2018, 11, 1730-1735.	15.6	203
40	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12355.	5.2	199
41	Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides. ACS Nano, 2018, 12, 5221-5227.	7.3	194
42	Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nature Nanotechnology, 2021, 16, 811-819.	15.6	193
43	Bubbleâ€Decorated Honeycombâ€Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors. Advanced Functional Materials, 2015, 25, 6545-6551.	7.8	189
44	An efficient polymer moist-electric generator. Energy and Environmental Science, 2019, 12, 972-978.	15.6	189
45	Graphene fiber: a new material platform for unique applications. NPG Asia Materials, 2014, 6, e113-e113.	3.8	175
46	Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6761-6766.	5.2	173
47	Graphene/graphitic carbon nitride hybrids for catalysis. Materials Horizons, 2017, 4, 832-850.	6.4	168
48	Graphene Platforms for Smart Energy Generation and Storage. Joule, 2018, 2, 245-268.	11.7	168
49	Preparation of Monolayer MoS2 Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Scientific Reports, 2017, 7, 11182.	1.6	167
50	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. Angewandte Chemie - International Edition, 2019, 58, 19041-19046.	7.2	167
51	Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 19307-19313.	1.3	164
52	Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nature Communications, 2019, 10, 1512.	5.8	160
53	Highâ€Đensity Monolith of Nâ€Đoped Holey Graphene for Ultrahigh Volumetric Capacity of Liâ€ŀon Batteries. Advanced Energy Materials, 2016, 6, 1502100.	10.2	158
54	Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates. Scientific Reports, 2013, 3, 2065.	1.6	157

#	Article	IF	CITATIONS
55	Graphitic Carbon Nitride/Nitrogenâ€Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. Angewandte Chemie - International Edition, 2016, 55, 10849-10853.	7.2	157
56	Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid. Journal of Electroanalytical Chemistry, 2004, 561, 149-156.	1.9	154
57	Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Research, 2015, 8, 1718-1728.	5.8	154
58	One Single Graphene Oxide Film for Responsive Actuation. ACS Nano, 2016, 10, 9529-9535.	7.3	151
59	All-region-applicable, continuous power supply of graphene oxide composite. Energy and Environmental Science, 2019, 12, 1848-1856.	15.6	150
60	High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. Nano Energy, 2018, 46, 415-422.	8.2	149
61	Self-powered wearable graphene fiber for information expression. Nano Energy, 2017, 32, 329-335.	8.2	148
62	Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. Journal of Materials Chemistry A, 2018, 6, 15303-15309.	5.2	146
63	Meshâ€onâ€Mesh Graphitic ₃ N ₄ @Graphene for Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1606352.	7.8	145
64	A Largeâ€Area, Flexible, and Flameâ€Retardant Graphene Paper. Advanced Functional Materials, 2016, 26, 1470-1476.	7.8	144
65	Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy and Environmental Science, 2018, 11, 2839-2845.	15.6	144
66	Electric Power Generation through the Direct Interaction of Pristine Grapheneâ€Oxide with Water Molecules. Small, 2018, 14, e1704473.	5.2	138
67	Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength. Advanced Functional Materials, 2020, 30, 1906996.	7.8	138
68	Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers. ACS Nano, 2013, 7, 2406-2412.	7.3	137
69	A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2014, 2, 6320.	5.2	136
70	Stimulus-responsive graphene systems towards actuator applications. Energy and Environmental Science, 2013, 6, 3520.	15.6	130
71	Unraveling the Charge Storage Mechanism of Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene Electrode in Acidic Electrolyte. ACS Energy Letters, 2020, 5, 2873-2880.	8.8	129
72	Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams. ACS Nano, 2016, 10, 1325-1332.	7.3	126

#	Article	IF	CITATIONS
73	Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range. Advanced Materials, 2020, 32, e1905875.	11.1	123
74	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. Angewandte Chemie, 2019, 131, 19217-19222.	1.6	122
75	Recent progress in grapheneâ€based electrodes for flexible batteries. InformaÄnÃ-Materiály, 2020, 2, 509-526.	8.5	122
76	Structure Design and Composition Engineering of Carbonâ€Based Nanomaterials for Lithium Energy Storage. Advanced Energy Materials, 2020, 10, 1903030.	10.2	122
77	Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy and Environmental Science, 2021, 14, 5330-5338.	15.6	122
78	A Microstructured Graphene/Poly(<i>N</i> â€isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. Angewandte Chemie - International Edition, 2018, 57, 16343-16347.	7.2	121
79	Spontaneous, Straightforward Fabrication of Partially Reduced Graphene Oxide–Polypyrrole Composite Films for Versatile Actuators. ACS Nano, 2016, 10, 4735-4741.	7.3	120
80	Reconstruction of Inherent Graphene Oxide Liquid Crystals for Large-Scale Fabrication of Structure-Intact Graphene Aerogel Bulk toward Practical Applications. ACS Nano, 2018, 12, 11407-11416.	7.3	120
81	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	15.6	119
82	Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon, 2014, 78, 231-242.	5.4	118
83	Graphene Oxide Nanoribbon Assembly toward Moistureâ€₽owered Information Storage. Advanced Materials, 2017, 29, 1604972.	11.1	118
84	Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage. ChemNanoMat, 2015, 1, 298-318.	1.5	117
85	Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. Advanced Materials, 2019, 31, e1805705.	11.1	117
86	Stretchable supercapacitor at \hat{a}^{2} 30 \hat{A}^{o} C. Energy and Environmental Science, 2021, 14, 3075-3085.	15.6	114
87	Ultrasensitive Pressure Sensor Based on an Ultralight Sparkling Graphene Block. ACS Applied Materials & Interfaces, 2017, 9, 22885-22892.	4.0	113
88	Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon, 2018, 129, 95-103.	5.4	112
89	Graphene Microtubings: Controlled Fabrication and Site-Specific Functionalization. Nano Letters, 2012, 12, 5879-5884.	4.5	111
90	Vaporâ€Activated Power Generation on Conductive Polymer. Advanced Functional Materials, 2016, 26, 8784-8792.	7.8	110

#	Article	IF	CITATIONS
91	Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale, 2013, 5, 3112.	2.8	101
92	Series of in-fiber graphene supercapacitors for flexible wearable devices. Journal of Materials Chemistry A, 2015, 3, 2547-2551.	5.2	101
93	Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. ACS Applied Materials & Interfaces, 2019, 11, 30927-30935.	4.0	98
94	An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Physical Chemistry Chemical Physics, 2013, 15, 8042.	1.3	97
95	A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nature Communications, 2021, 12, 2647.	5.8	97
96	Nitrogenâ€Doped Carbon Nanotube Aerogels for Highâ€Performance ORR Catalysts. Small, 2015, 11, 3903-3908.	5.2	96
97	Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 38170-38175.	4.0	96
98	Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy, 2018, 45, 37-43.	8.2	96
99	Graphene quantum dots for energy storage and conversion: from fabrication to applications. Materials Chemistry Frontiers, 2020, 4, 421-436.	3.2	96
100	Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing. Scientific Reports, 2014, 4, 5882.	1.6	94
101	Selfâ€Healing Graphene Oxide Based Functional Architectures Triggered by Moisture. Advanced Functional Materials, 2017, 27, 1703096.	7.8	94
102	Electric power generation using paper materials. Journal of Materials Chemistry A, 2019, 7, 20574-20578.	5.2	94
103	Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nature Communications, 2020, 11, 6185.	5.8	93
104	Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators. Accounts of Chemical Research, 2017, 50, 1663-1671.	7.6	92
105	Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy, 2018, 46, 297-304.	8.2	91
106	Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid). Journal of Polymer Science Part A, 2004, 42, 3170-3177.	2.5	90
107	Grapheneâ€Based Fibers: Recent Advances in Preparation and Application. Advanced Materials, 2020, 32, e1901979.	11.1	88
108	Hybrid Energy Storage Device: Combination of Zinc-Ion Supercapacitor and Zinc–Air Battery in Mild Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 7239-7248.	4.0	88

#	Article	IF	CITATIONS
109	Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy, 2017, 41, 367-376.	8.2	87
110	Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO ₂ nanowires. Journal of Materials Chemistry A, 2019, 7, 6766-6772.	5.2	87
111	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	7.3	87
112	Three-dimensional graphene–polypyrrole hybrid electrochemical actuator. Nanoscale, 2012, 4, 7563.	2.8	86
113	Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. Nanoscale, 2015, 7, 3035-3042.	2.8	85
114	Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small, 2016, 12, 3229-3234.	5.2	83
115	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie - International Edition, 2020, 59, 14541-14549.	7.2	83
116	Moist-electric generation. Nanoscale, 2019, 11, 23083-23091.	2.8	82
117	Salty Ice Electrolyte with Superior Ionic Conductivity Towards Lowâ€Temperature Aqueous Zinc Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2101277.	7.8	81
118	Wearable fiberform hygroelectric generator. Nano Energy, 2018, 53, 698-705.	8.2	80
119	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. Advanced Materials, 2016, 28, 3305-3312.	11.1	79
120	Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12, 14-30.	6.2	78
121	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705967.	7.8	78
122	A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Research, 2019, 12, 1199-1206.	5.8	78
123	Emerging Materials for Water-Enabled Electricity Generation. , 2021, 3, 193-209.		78
124	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte Chemie - International Edition, 2015, 54, 14951-14955.	7.2	77
125	Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Applied Materials & amp; Interfaces, 2019, 11, 21822-21829.	4.0	77
126	All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano, 2021, 15, 11417-11427.	7.3	77

#	Article	IF	CITATIONS
127	Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. Advanced Materials, 2022, 34, e2110013.	11.1	75
128	A powerful approach to functional graphene hybrids for high performance energy-related applications. Energy and Environmental Science, 2014, 7, 3699-3708.	15.6	74
129	Environmentally Responsive Graphene Systems. Small, 2014, 10, 2151-2164.	5.2	73
130	Maskâ€Free Patterning of High onductivity Metal Nanowires in Open Air by Spatially Modulated Femtosecond Laser Pulses. Advanced Materials, 2015, 27, 6238-6243.	11.1	73
131	Twoâ€dimensional materials of group″VA boosting the development of energy storage and conversion. , 2020, 2, 54-71.		73
132	Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. Journal of Materials Chemistry A, 2018, 6, 19563-19569.	5.2	72
133	Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors. Small, 2017, 13, 1700371.	5.2	71
134	An aqueous Zn–MnO ₂ rechargeable microbattery. Journal of Materials Chemistry A, 2018, 6, 10926-10931.	5.2	69
135	Versatile Graphene Oxide Puttyâ€Like Material. Advanced Materials, 2016, 28, 10287-10292.	11.1	68
136	Laserâ€Assisted Largeâ€Scale Fabrication of Allâ€Solidâ€State Asymmetrical Microâ€Supercapacitor Array. Small, 2018, 14, e1801809.	5.2	68
137	Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy, 2020, 67, 104238.	8.2	68
138	Moisture adsorption-desorption full cycle power generation. Nature Communications, 2022, 13, 2524.	5.8	67
139	A rationally-designed synergetic polypyrrole/graphene bilayer actuator. Journal of Materials Chemistry, 2012, 22, 4015.	6.7	66
140	Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nature Communications, 2019, 10, 2855.	5.8	65
141	Heteroatom substituted and decorated graphene: preparation and applications. Physical Chemistry Chemical Physics, 2015, 17, 32077-32098.	1.3	64
142	Highly Efficient Actuator of Graphene/Polydopamine Uniform Composite Thin Film Driven by Moisture Gradients. Advanced Materials Interfaces, 2016, 3, 1600169.	1.9	64
143	Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS Nano, 2020, 14, 14929-14938.	7.3	64
144	Crystalline oligopyrene nanowires with multicolored emission. Chemical Communications, 2004, , 2800.	2.2	63

#	Article	IF	CITATIONS
145	Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation. Light: Science and Applications, 2020, 9, 80.	7.7	63
146	Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. Electrochemistry Communications, 2013, 35, 49-52.	2.3	60
147	A smart, anti-piercing and eliminating-dendrite lithium metal battery. Nano Energy, 2018, 49, 403-410.	8.2	57
148	Load-tolerant, highly strain-responsive graphene sheets. Journal of Materials Chemistry, 2011, 21, 2057.	6.7	55
149	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55
150	Metal (Ag, Pt)–MoS ₂ Hybrids Greenly Prepared Through Photochemical Reduction of Femtosecond Laser Pulses for SERS and HER. ACS Sustainable Chemistry and Engineering, 2018, 6, 7704-7714.	3.2	55
151	Spontaneous formation of Cu ₂ O–g-C ₃ N ₄ core–shell nanowires for photocurrent and humidity responses. Nanoscale, 2015, 7, 9694-9702.	2.8	54
152	Trash to treasure: converting plastic waste into a useful graphene foil. Nanoscale, 2017, 9, 9089-9094.	2.8	54
153	Laser-Assisted Multiscale Fabrication of Configuration-Editable Supercapacitors with High Energy Density. ACS Nano, 2019, 13, 7463-7470.	7.3	54
154	Controllable Synthesis of Nanosized Amorphous MoS <i>_x</i> Using Temporally Shaped Femtosecond Laser for Highly Efficient Electrochemical Hydrogen Production. Advanced Functional Materials, 2019, 29, 1806229.	7.8	54
155	Sunlightâ€Coordinated Highâ€Performance Moisture Power in Natural Conditions. Advanced Materials, 2022, 34, e2103897.	11.1	54
156	Highly Ordered Graphene Solid: An Efficient Platform for Capacitive Sodium-Ion Storage with Ultrahigh Volumetric Capacity and Superior Rate Capability. ACS Nano, 2019, 13, 9161-9170.	7.3	53
157	Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers. Advanced Energy Materials, 2021, 11, 2003982.	10.2	53
158	A self-healing zinc ion battery under -20 °C. Energy Storage Materials, 2022, 44, 517-526.	9.5	53
159	Monolithic graphene fibers for solid-phase microextraction. Journal of Chromatography A, 2013, 1320, 27-32.	1.8	52
160	Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes. Journal of Materials Chemistry, 2011, 21, 13978.	6.7	51
161	Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chemical Science, 2019, 10, 1244-1253.	3.7	51
162	Reduced Graphene Oxide–Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance. Advanced Science, 2020, 7, 1903125.	5.6	51

#	Article	IF	CITATIONS
163	Shape-Controllable Gold Nanoparticle–MoS ₂ Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS ₂ via Temporally Shaped Femtosecond Pulses. ACS Applied Materials & Interfaces, 2017, 9, 7447-7455.	4.0	50
164	Few-Layer Siloxene as an Electrode for Superior High-Rate Zinc Ion Hybrid Capacitors. ACS Energy Letters, 2021, 6, 1786-1794.	8.8	50
165	InP and Sn:InP based quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 21922-21929.	5.2	49
166	A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19463-19469.	5.2	49
167	Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy, 2019, 64, 103938.	8.2	49
168	A Flexible Aqueous Zinc–lodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	11.1	49
169	Flexible and integrated supercapacitor with tunable energy storage. Nanoscale, 2017, 9, 12324-12329.	2.8	48
170	Reborn Threeâ€Ðimensional Graphene with Ultrahigh Volumetric Desalination Capacity. Advanced Materials, 2021, 33, e2105853.	11.1	48
171	Ultra-high toughness all graphene fibers derived from synergetic effect of interconnected graphene ribbons and graphene sheets. Carbon, 2017, 120, 17-22.	5.4	47
172	Cylindrically Focused Nonablative Femtosecond Laser Processing of Longâ€Range Uniform Periodic Surface Structures with Tunable Diffraction Efficiency. Advanced Optical Materials, 2019, 7, 1900706.	3.6	47
173	Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics, 2019, 8, 869-878.	2.9	47
174	Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS ₂ defect sites for photoluminescence control and SERS enhancement. Nanoscale, 2019, 11, 485-494.	2.8	45
175	An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. Journal of Materials Chemistry A, 2021, 9, 10945-10952.	5.2	45
176	Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 24608-24615.	4.0	44
177	Recent advances in highly integrated energy conversion and storage system. SusMat, 2022, 2, 142-160.	7.8	44
178	Electrochemical synthesis of novel polypyrrole microstructuresElectronic supplementary information (ESI) available: Fig. S1: transmittance IR and Raman spectrum of a PPy film generated at 1.2 V. See http://www.rsc.org/suppdata/cc/b2/b209245j/. Chemical Communications, 2003, , 206-207.	2.2	43
179	The First Flexible Dualâ€Ion Microbattery Demonstrates Superior Capacity and Ultrahigh Energy Density: Small and Powerful. Advanced Functional Materials, 2020, 30, 2002086.	7.8	43
180	Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy, 2022, 95, 107017.	8.2	43

#	Article	IF	CITATIONS
181	Oneâ€pot Synthesis of Nitrogen and Phosphorus Coâ€doped Graphene and Its Use as Highâ€performance Electrocatalyst for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2015, 10, 2609-2614.	1.7	42
182	Superplastic Airâ€Dryable Graphene Hydrogels for Wetâ€Press Assembly of Ultrastrong Superelastic Aerogels with Infinite Macroscale. Advanced Functional Materials, 2019, 29, 1901917.	7.8	42
183	Compact Assembly and Programmable Integration of Supercapacitors. Advanced Materials, 2020, 32, e1907005.	11.1	42
184	Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Advances, 2012, 2, 2154.	1.7	40
185	MEG actualized by high-valent metal carrier transport. Nano Energy, 2019, 65, 104047.	8.2	40
186	Progress in the Understanding and Applications of the Intrinsic Reactivity of Grapheneâ€Based Materials. Small Science, 2021, 1, 2000026.	5.8	40
187	(111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 38066-38072.	4.0	39
188	A directly swallowable and ingestible micro-supercapacitor. Journal of Materials Chemistry A, 2020, 8, 4055-4061.	5.2	39
189	Graphitic Carbon Nitride/Nitrogenâ€Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. Angewandte Chemie, 2016, 128, 11007-11011.	1.6	38
190	Power generation from graphene-water interactions. FlatChem, 2019, 14, 100090.	2.8	38
191	Graphene Oxide Assemblies for Sustainable Clean-Water Harvesting and Green-Electricity Generation. Accounts of Materials Research, 2021, 2, 97-107.	5.9	38
192	Fabrication of highly hydrophobic surfaces of conductive polythiophene. Journal of Materials Chemistry, 2003, 13, 2858.	6.7	37
193	Multilevel, Multicomponent Microarchitectures of Vertically-Aligned Carbon Nanotubes for Diverse Applications. ACS Nano, 2011, 5, 994-1002.	7.3	37
194	Performance of graphene sheets as stationary phase for capillary gas chromatographic separations. Journal of Chromatography A, 2015, 1399, 74-79.	1.8	37
195	Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers. Journal of Chromatography A, 2016, 1460, 173-180.	1.8	37
196	A Responsive Battery with Controlled Energy Release. Angewandte Chemie - International Edition, 2016, 55, 14643-14647.	7.2	37
197	Versatile origami micro-supercapacitors array as a wind energy harvester. Journal of Materials Chemistry A, 2018, 6, 19750-19756.	5.2	37
198	Miniaturized high-performance metallic 1T-Phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy, 2020, 67, 104260.	8.2	37

#	Article	IF	CITATIONS
199	Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions. ACS Nano, 2020, 14, 6249-6257.	7.3	37
200	Uniquely Arranged Grapheneâ€onâ€Graphene Structure as a Binderâ€Free Anode for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2014, 10, 5035-5041.	5.2	36
201	Metal/graphene oxide batteries. Carbon, 2017, 125, 299-307.	5.4	36
202	Interactions between Grapheneâ€Based Materials and Water Molecules toward Actuator and Electricityâ€Generator Applications. Small Methods, 2018, 2, 1800108.	4.6	36
203	Processing and manufacturing of graphene-based microsupercapacitors. Materials Chemistry Frontiers, 2018, 2, 1750-1764.	3.2	36
204	Laser fabrication of functional micro-supercapacitors. Journal of Energy Chemistry, 2021, 59, 642-665.	7.1	35
205	Graphitic C3N4-Pt nanohybrids supported on a graphene network for highly efficient methanol oxidation. Science China Materials, 2015, 58, 21-27.	3.5	34
206	Superelastic, Macroporous Polystyreneâ€Mediated Graphene Aerogels for Active Pressure Sensing. Chemistry - an Asian Journal, 2016, 11, 1071-1075.	1.7	34
207	Tunable Graphene Systems for Water Desalination. ChemNanoMat, 2020, 6, 1028-1048.	1.5	34
208	Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach. Energy and Environmental Science, 2022, 15, 1131-1143.	15.6	34
209	High performance broadband acoustic absorption and sound sensing of a bubbled graphene monolith. Journal of Materials Chemistry A, 2019, 7, 11423-11429.	5.2	33
210	Femtosecond laser mediated fabrication of micro/nanostructured TiO2- photoelectrodes: Hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties. Applied Catalysis B: Environmental, 2020, 277, 119231.	10.8	33
211	Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5617-5627.	5.2	32
212	A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochemistry Communications, 2016, 72, 122-125.	2.3	32
213	Hybrid superhydrophilic–superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection. Microsystems and Nanoengineering, 2019, 5, 48.	3.4	32
214	Frontiers of carbon materials as capacitive deionization electrodes. Dalton Transactions, 2020, 49, 5006-5014.	1.6	32
215	Polymer/Graphene Hybrids for Advanced Energy onversion and â€Storage Materials. Chemistry - an Asian Journal, 2016, 11, 1151-1168.	1.7	31
216	Controllable localization of carbon nanotubes on the holey edge of graphene: an efficient oxygen reduction electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 18240-18247.	5.2	31

#	Article	IF	CITATIONS
217	Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films. Scientific Reports, 2015, 5, 17557.	1.6	30
218	The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. Physical Chemistry Chemical Physics, 2020, 22, 3112-3121.	1.3	30
219	Mechanism of Nitrogen-Doped Ti ₃ C ₂ Quantum Dots for Free-Radical Scavenging and the Ultrasensitive H ₂ O ₂ Detection Performance. ACS Applied Materials & Interfaces, 2021, 13, 42442-42450.	4.0	30
220	Glucose oxidase electrodes based on microstructured polypyrrole films. Journal of Applied Polymer Science, 2005, 98, 2550-2554.	1.3	29
221	Preparation of multifunctional microchannel-network graphene foams. Journal of Materials Chemistry A, 2014, 2, 16786-16792.	5.2	29
222	Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. Carbon, 2016, 106, 9-19.	5.4	29
223	Grain Boundary Design of Solid Electrolyte Actualizing Stable Allâ€Solidâ€State Sodium Batteries. Small, 2021, 17, e2103819.	5.2	29
224	Coupling interconnected MoO ₃ /WO ₃ nanosheets with a graphene framework as a highly efficient anode for lithium-ion batteries. Nanoscale, 2018, 10, 396-402.	2.8	28
225	A 3D-graphene fiber electrode embedded with nitrogen-rich-carbon-coated ZIF-67 for the ultrasensitive detection of adrenaline. Journal of Materials Chemistry B, 2019, 7, 5291-5295.	2.9	28
226	Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting. Nanoscale, 2020, 12, 13484-13490.	2.8	28
227	Multifunctional 3D Micro-Nanostructures Fabricated through Temporally Shaped Femtosecond Laser Processing for Preventing Thrombosis and Bacterial Infection. ACS Applied Materials & Interfaces, 2020, 12, 17155-17166.	4.0	28
228	An Aqueous Antiâ€Freezing and Heatâ€Tolerant Symmetric Microsupercapacitor with 2.3ÂV Output Voltage. Advanced Energy Materials, 2021, 11, 2101523.	10.2	28
229	Electrochemical fabrication of polythiophene film coated metallic nanowire arrays. Journal of Materials Science, 2003, 38, 2423-2427.	1.7	27
230	A 2D free-standing film-inspired electrocatalyst for highly efficient hydrogen production. Journal of Materials Chemistry A, 2017, 5, 12027-12033.	5.2	27
231	Sunlightâ€Ðriven Water Transport via a Reconfigurable Pump. Angewandte Chemie - International Edition, 2018, 57, 15435-15440.	7.2	27
232	Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nature Communications, 2022, 13, 1863.	5.8	27
233	A versatile, superelastic polystyrene/graphene capsule-like framework. Journal of Materials Chemistry A, 2016, 4, 10118-10123.	5.2	26
234	Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. Nanophotonics, 2020, 9, 691-702.	2.9	26

#	Article	IF	CITATIONS
235	2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application. ACS Nano, 2021, 15, 16533-16541.	7.3	26
236	A dually spontaneous reduction and assembly strategy for hybrid capsules of graphene quantum dots with platinum–copper nanoparticles for enhanced oxygen reduction reaction. Carbon, 2014, 74, 170-179.	5.4	25
237	Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly. Materials Today, 2016, 19, 146-156.	8.3	25
238	From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Storage Materials, 2021, 35, 327-333.	9.5	25
239	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480.	11.1	25
240	A respiration-detective graphene oxide/lithium battery. Journal of Materials Chemistry A, 2016, 4, 19154-19159.	5.2	24
241	Wood-inspired multi-channel tubular graphene network for high-performance lithium-sulfur batteries. Carbon, 2018, 139, 522-530.	5.4	24
242	Planar Grapheneâ€Based Microsupercapacitors. Small, 2021, 17, e2006827.	5.2	24
243	A Responsive Battery with Controlled Energy Release. Angewandte Chemie, 2016, 128, 14863-14867.	1.6	23
244	The Emerging of Aqueous Zincâ€Based Dual Electrolytic Batteries. Small, 2021, 17, e2008043.	5.2	23
245	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, .	6.9	23
246	A linear graphene edge nanoelectrode. Chemical Communications, 2015, 51, 8765-8768.	2.2	22
247	A versatile graphene foil. Journal of Materials Chemistry A, 2017, 5, 14508-14513.	5.2	22
248	Wallâ€Mesoporous Graphitic Carbon Nitride Nanotubes for Efficient Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2018, 13, 3160-3164.	1.7	22
249	Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Science Advances, 2022, 8, .	4.7	22
250	A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3- <i>O</i> -Mono-β- <scp>d</scp> -Glucuronide. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
251	Highly crumpled nanocarbons as efficient metal-free electrocatalysts for zinc–air batteries. Nanoscale, 2018, 10, 15706-15713.	2.8	21
252	Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy and Environmental Science, 2022, 15, 3086-3096.	15.6	21

#	Article	IF	CITATIONS
253	Regulation of 2D Graphene Materials for Electrocatalysis. Chemistry - an Asian Journal, 2020, 15, 2271-2281.	1.7	20
254	Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. Nano Materials Science, 2023, 5, 247-264.	3.9	20
255	Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 24840-24845.	4.0	19
256	Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Science Advances, 2022, 8, .	4.7	19
257	Functional Carbon Nanomesh Clusters. Advanced Functional Materials, 2017, 27, 1701514.	7.8	18
258	Hierarchical ZnO@Hybrid Carbon Core–Shell Nanowire Array on a Graphene Fiber Microelectrode for Ultrasensitive Detection of 2,4,6-Trinitrotoluene. ACS Applied Materials & Interfaces, 2020, 12, 8547-8554.	4.0	18
259	Direct electrochemical generation of conducting polymer microcontainers on silicon substrate. Polymer International, 2004, 53, 2125-2129.	1.6	17
260	Chromatographic selectivity of graphene capillary column pretreated with bio-inspired polydopamine polymer. RSC Advances, 2015, 5, 74040-74045.	1.7	17
261	Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chinese Journal of Polymer Science (English Edition), 2019, 37, 535-547.	2.0	17
262	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie, 2020, 132, 14649-14657.	1.6	17
263	Shock induced conversion of carbon dioxide to few layer graphene. Carbon, 2017, 115, 471-476.	5.4	17
264	Pure Aqueous Planar Microsupercapacitors with Ultrahigh Energy Density under Wide Temperature Ranges. Advanced Functional Materials, 2022, 32, .	7.8	17
265	2D Grapheneâ€Based Macroscopic Assemblies for Microâ€Supercapacitors. ChemSusChem, 2020, 13, 1255-1274.	3.6	16
266	Functional group defect design in polymeric carbon nitride for photocatalytic application. APL Materials, 2020, 8, .	2.2	16
267	Laserâ€Based Growth and Treatment of Graphene for Advanced Photo―and Electroâ€Related Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	16
268	Carbon nanotube–nanopipe composite vertical arrays for enhanced electrochemical capacitance. Carbon, 2013, 64, 507-515.	5.4	15
269	Solution-processed MoS ₂ nanotubes/reduced graphene oxide nanocomposite as an active electrocatalyst toward the hydrogen evolution reaction. RSC Advances, 2016, 6, 70740-70746.	1.7	15
270	Polymorph-Controlled Crystallization of Acetaminophen through Femtosecond Laser Irradiation. Crystal Growth and Design, 2019, 19, 3265-3271.	1.4	15

#	Article	IF	CITATIONS
271	One-step synthesis of hierarchical Ni3Se2 nanosheet-on-nanorods/Ni foam electrodes for hybrid supercapacitors. Chinese Chemical Letters, 2022, 33, 475-479.	4.8	15
272	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie - International Edition, 2021, 60, 24505-24509.	7.2	15
273	The promising solarâ€powered water purification based on graphene functional architectures. EcoMat, 2022, 4, .	6.8	15
274	Graphitic carbon nitride nanofibers in seaweed-like architecture for gas chromatographic separations. Journal of Chromatography A, 2017, 1496, 133-140.	1.8	14
275	Femtosecond Laser Induced Phase Transformation of TiO ₂ with Exposed Reactive Facets for Improved Photoelectrochemistry Performance. ACS Applied Materials & Interfaces, 2020, 12, 41250-41258.	4.0	14
276	Re-shaping graphene hydrogels for effectively enhancing actuation responses. Nanoscale, 2015, 7, 12372-12378.	2.8	13
277	A graphene-based porous carbon material as a stationary phase for gas chromatographic separations. RSC Advances, 2017, 7, 32126-32132.	1.7	13
278	Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors. Frontiers of Materials Science, 2019, 13, 145-153.	1.1	13
279	Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. Science China Materials, 2020, 63, 1300-1309.	3.5	13
280	An Ultrafast Supercapacitor Based on 3D Ordered Porous Graphene Film with AC Line Filtering Performance. ACS Applied Energy Materials, 2020, 3, 5182-5189.	2.5	13
281	The Advance and Perspective on Electrode Materials for Metal–Ion Hybrid Capacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100022.	2.8	13
282	Controllable Photonic Structures on Silicon-on-Insulator Devices Fabricated Using Femtosecond Laser Lithography. ACS Applied Materials & Interfaces, 2021, 13, 43622-43631.	4.0	13
283	A hierarchical heterojunction polymer aerogel for accelerating charge transfer and separation. Journal of Materials Chemistry A, 2021, 9, 7881-7887.	5.2	13
284	A three-dimensional hollow graphene fiber microelectrode with shrink-effect-enabled enzyme immobilization for sensor applications. Science Bulletin, 2019, 64, 718-722.	4.3	12
285	Moisture power in natural polymeric silk fibroin flexible membrane triggers efficient antibacterial activity of silver nanoparticles. Nano Energy, 2021, 90, 106529.	8.2	12
286	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte Chemie, 2015, 127, 15164-15168.	1.6	11
287	Graphene Ionogel Ultraâ€Fast Filter Supercapacitor with 4ÂV Workable Window and 150 °C Operable Temperature. Small, 2022, 18, e2200916.	5.2	11
288	A versatile, heat-resisting, electrocatalytic active graphene framework by in-situ formation of boron nitride quantum dots. Carbon, 2022, 192, 123-132.	5.4	11

#	Article	IF	CITATIONS
289	Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Science China Materials, 2022, 65, 2412-2420.	3.5	11
290	Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains. Applied Physics A: Materials Science and Processing, 2013, 111, 813-819.	1.1	10
291	Scalable Conversion of CO2 to N-Doped Carbon Foam for Efficient Oxygen Reduction Reaction and Lithium Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 3358-3366.	3.2	10
292	Sunlightâ€Ðriven Water Transport via a Reconfigurable Pump. Angewandte Chemie, 2018, 130, 15661-15666.	1.6	10
293	Interface-enhanced distillation beyond tradition based on well-arranged graphene membrane. Science China Materials, 2020, 63, 1948-1956.	3.5	10
294	Bridged Carbon Fabric Membrane with Boosted Performance in AC Lineâ€Filtering Capacitors. Advanced Science, 2022, 9, e2105072.	5.6	10
295	Novel route to poly(p-phenylene vinylene) polymers. Journal of Polymer Science Part A, 2003, 41, 449-455.	2.5	9
296	Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes. Journal of Materials Chemistry, 2010, 20, 3595.	6.7	9
297	Nonlinear ionization mechanism dependence of energy absorption in diamond under femtosecond laser irradiation. Journal of Applied Physics, 2013, 113, 143106.	1.1	9
298	Detection of epinephrine and metanephrine at a nitrogen doped three-dimensional porous graphene modified electrode. Analytical Methods, 2015, 7, 10394-10402.	1.3	9
299	A Cutâ€Resistant and Highly Restorable Graphene Foam. Small, 2018, 14, e1801916.	5.2	9
300	Conjugated Polymers as Hole Transporting Materials for Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 449-458.	2.0	9
301	Biomimetic Antigravity Water Transport and Remote Harvesting Powered by Sunlight. Global Challenges, 2020, 4, 2000043.	1.8	9
302	An intelligent film actuator with multi-level deformation behaviour. Nanoscale Horizons, 2020, 5, 1226-1232.	4.1	9
303	Conductive Writing with High Precision by Laserâ€Induced Pointâ€ŧoâ€Line Carbonization Strategy for Flexible Supercapacitors. Advanced Optical Materials, 2021, 9, 2100793.	3.6	9
304	Separation performance of graphene oxide as stationary phase for capillary gas chromatography. Chinese Chemical Letters, 2015, 26, 47-49.	4.8	8
305	A Microstructured Graphene/Poly(<i>N</i> â€isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. Angewandte Chemie, 2018, 130, 16581-16585.	1.6	8
306	High-performance flexible and integratable MEG devices from sulfonated carbon solid acids containing strong BrA,nsted acid sites. Journal of Materials Chemistry A, 2021, 9, 24488-24494.	5.2	8

#	Article	IF	CITATIONS
307	Tunable assembly of carbon nanospheres on single-walled carbon nanotubes. Nanotechnology, 2010, 21, 305602.	1.3	7
308	Ultrafast response of dielectric properties of monolayer phosphorene to femtosecond laser. Journal of Applied Physics, 2017, 121, 173105.	1.1	7
309	Dimensional confinement of graphene in a polypyrrole microbowl for sensor applications. Journal of Materials Chemistry B, 2017, 5, 5733-5737.	2.9	7
310	Ultra-small dispersed Cu _x O nanoparticles on graphene fibers for miniaturized electrochemical sensor applications. RSC Advances, 2019, 9, 28207-28212.	1.7	7
311	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie, 2021, 133, 24710-24714.	1.6	7
312	Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects. Chinese Journal of Catalysis, 2022, 43, 1216-1229.	6.9	7
313	Tunable-Deformed Graphene Layers for Actuation. Frontiers in Chemistry, 2019, 7, 725.	1.8	6
314	Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	2.2	6
315	Ultratough and ultrastrong graphene oxide hybrid films <i>via</i> a polycationitrile approach. Nanoscale Horizons, 2021, 6, 341-347.	4.1	6
316	A facile laser assisted paste-tear approach to large area, flexible and wearable in-plane micro-supercapacitors. Journal of Power Sources, 2022, 532, 231346.	4.0	6
317	Dry adhesion of polythiophene nanotube arrays with dragâ€induced direction dependence. Journal of Applied Polymer Science, 2012, 124, 4047-4053.	1.3	5
318	Stepwise assembled nickel–cobalt-hydroxide hetero-accumulated nanocrystalline walls on reduced graphene oxide/nickel foams: an adjustable interface design for capacitive charge storage. Journal of Materials Chemistry A, 2014, 2, 4894-4898.	5.2	5
319	An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Research, 2022, 15, 5081-5088.	5.8	5
320	Binary active sites of nickel–iron alloy bonded in nitrogen-doped carbon nanocage for robust durability and low polarization zinc-air batteries. Journal of Power Sources, 2022, 538, 231563.	4.0	5
321	Proton-conducting gel polyelectrolytes based on Lewis acid. Journal of Applied Polymer Science, 2003, 90, 1267-1272.	1.3	4
322	Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules. Chemistry - an Asian Journal, 2017, 12, 1272-1276.	1.7	4
323	A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets. Frontiers of Materials Science, 2018, 12, 105-117.	1.1	4
324	Hygroelectric Generators: Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970013.	11.1	3

#	Article	IF	CITATIONS
325	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, .	6.9	3
326	Electrochemical polymerization of ?-naphthalene sulfonic acid. Journal of Applied Polymer Science, 2004, 92, 1939-1944.	1.3	2
327	Frequency dependence of electron dynamics during femtosecond laser resonant photoionization of Li4 cluster. Journal of Applied Physics, 2013, 114, 143105.	1.1	2
328	Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
329	Customâ€Built Graphene Acousticâ€Absorbing Aerogel for Audio Signal Recognition. Advanced Materials Interfaces, 2021, 8, 2100227.	1.9	2
330	Power from water and graphene. Chinese Science Bulletin, 2018, 63, 2806-2817.	0.4	2
331	Hydrodynamic simulation of ultrashort pulse laser ablation of gold film. Applied Physics A: Materials Science and Processing, 2015, 119, 1047-1052.	1.1	1
332	Asymmetrical Micro-Supercapacitors: Laser-Assisted Large-Scale Fabrication of All-Solid-State Asymmetrical Micro-Supercapacitor Array (Small 37/2018). Small, 2018, 14, 1870171.	5.2	1
333	Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025.	2.2	1
334	Biomimetic Graphite Foils with High Foldability and Conductivity. Small Methods, 2019, 3, 1800282.	4.6	1
335	Planar Grapheneâ€Based Microsupercapacitors (Small 48/2021). Small, 2021, 17, .	5.2	1
336	Conductive Writing with High Precision by Laserâ€Induced Pointâ€toâ€Line Carbonization Strategy for Flexible Supercapacitors (Advanced Optical Materials 24/2021). Advanced Optical Materials, 2021, 9, .	3.6	1
337	Titelbild: A Microstructured Graphene/Poly(N -isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation (Angew. Chem. 50/2018). Angewandte Chemie, 2018, 130, 16471-16471.	1.6	0
338	Zn–S Hybrid Batteries: Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers (Adv. Energy Mater. 14/2021). Advanced Energy Materials, 2021, 11, 2170055.	10.2	0