Binlin Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous phase reforming of biodiesel byproduct glycerol over mesoporous Ni-Cu/CeO2 for renewable hydrogen production. Fuel, 2022, 308, 122014.	6.4	44
2	Correlating phosphorus transformation with process water during hydrothermal carbonization of sewage sludge via experimental study and mathematical modelling. Science of the Total Environment, 2022, 807, 150750.	8.0	22
3	Hydrogen and syngas co-production by coupling of chemical looping water splitting and glycerol oxidation reforming using Ce–Ni modified Fe-based oxygen carriers. Journal of Cleaner Production, 2022, 335, 130299.	9.3	11
4	Chemical looping steam reforming of ethanol without and with in-situ CO2 capture. International Journal of Hydrogen Energy, 2022, 47, 6552-6568.	7.1	15
5	Fabrication and catalytic application of a tandem reactor module using Au nanoparticle-coated glass beads as packing materials. Reaction Chemistry and Engineering, 2022, 7, 1219-1229.	3.7	2
6	Numerical and experimental research of the characteristics of concentration solar cells. Frontiers in Energy, 2021, 15, 279-291.	2.3	1
7	Phase Equilibrium Characteristics of CO2 and Ionic Liquids with [FAP]â^ Anion Used for Absorption-Compression Refrigeration Working Pairs. Journal of Thermal Science, 2021, 30, 165-176.	1.9	7
8	Co-production of hydrogen and syngas from chemical looping water splitting coupled with decomposition of glycerol using Fe-Ce-Ni based oxygen carriers. Energy Conversion and Management, 2021, 238, 114166.	9.2	31
9	Renewable hydrogen production from chemical looping steam reforming of biodiesel byproduct glycerol by mesoporous oxygen carriers. Chemical Engineering Journal, 2021, 416, 127612.	12.7	44
10	Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass. Energy, 2021, 226, 120358.	8.8	69
11	Thermochemical characteristics and non-isothermal kinetics of camphor biomass waste. Journal of Environmental Chemical Engineering, 2021, 9, 105311 Enhancing biochar oxidation reaction with the mediator of Fe2+/Fe3+ or <mml:math xmlas:mml="http://www.w3.org/1998/Math/Math/Mit" altimg="sil-syg">- cmml:math//www.w3.org/1998/Math/Math/Mit" altimg="sil-syg">- cmml:math//wwww<!--</td--><td>6.7</td><td>13</td></mml:math 	6.7	13
12	mathvariant="netp.//www.w3.org/1996/Math/Math/MathuE" alting="si1.svg"> <nmin.mr svg"=""><nmin.mr nmin.mr="" svg"="" svg"<=""><nmin.mr svg"=""><nmin.mr nmin.mr="" svg"="" svg"<=""><nmin.mr svg"=""><nmin.mr svg"=""><nmin.mr svg"=""><nmin.mr svg"=""><nmin.mr nmin.mr="" svg"="" svg"<=""><nmin.mr <="" nmin.mr="" svg"<="" td=""><td>mməl2msut</td><td>ɔsup₄ </td></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr></nmin.mr>	mm əl2 msut	ɔsup₄
13	Effect of impurities of CH3OH, CH3COOH, and KOH on aqueous phase reforming of glycerol over mesoporous Ni–Cu/CeO2 catalyst. Journal of the Energy Institute, 2021, 99, 198-208.	5.3	14
14	Effects of TiO ₂ doping on the performance of thermochemical energy storage based on Mn ₂ O ₃ /Mn ₃ O ₄ redox materials. RSC Advances, 2021, 11, 33744-33758.	3.6	4
15	Oxygen carriers for chemical-looping water splitting to hydrogen production: A critical review. Carbon Capture Science & Technology, 2021, 1, 100006.	10.4	27
16	Thermodynamic Analysis of Packed Bed Thermal Energy Storage System. Journal of Thermal Science, 2020, 29, 445-456.	1.9	13
17	Fast degradation of nitro and azo compounds in recyclable noble-metal ions systems. Ionics, 2020, 26, 1515-1524.	2.4	1
18	Study on non-isothermal kinetics and the influence of calcium oxide on hydrogen production during bituminous coal pyrolysis. Journal of Analytical and Applied Pyrolysis, 2020, 150, 104888.	5.5	36

BINLIN DOU

#	Article	IF	CITATIONS
19	Rapid synthesis of gold nanoparticles for photocatalytic reduction of 4-nitrophenol. Research on Chemical Intermediates, 2020, 46, 5117-5131.	2.7	9
20	Thermogravimetric kinetics on catalytic combustion of bituminous coal. Journal of the Energy Institute, 2020, 93, 2526-2535.	5.3	35
21	Fabrication of methane thermoelectric gas sensor based on 3D porous Pd/ Co 3 O 4 catalyst. Journal of Chemical Technology and Biotechnology, 2020, 95, 2403-2410.	3.2	3
22	Migration and Transformation of Phosphorus during Hydrothermal Carbonization of Sewage Sludge: Focusing on the Role of pH and Calcium Additive and the Transformation Mechanism. ACS Sustainable Chemistry and Engineering, 2020, 8, 7806-7814.	6.7	58
23	Binary and ternary transition metal phosphides for dry reforming of methane. Reaction Chemistry and Engineering, 2020, 5, 719-727.	3.7	18
24	Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive. Science of the Total Environment, 2020, 738, 139786.	8.0	57
25	Structure–Reactivity Correlations in Pyrolysis and Gasification of Sewage Sludge Derived Hydrochar: Effect of Hydrothermal Carbonization. Energy & Fuels, 2020, 34, 1965-1976.	5.1	21
26	Chemical Looping Reforming of Glycerol for Continuous H2 Production by Moving-Bed Reactors: Simulation and Experiment. Energy & Fuels, 2020, 34, 1841-1850.	5.1	13
27	Modeling and experimental assessment of the novel HIâ€I ₂ â€H ₂ O electrolysis for hydrogen generation in the sulfurâ€iodine cycle. International Journal of Energy Research, 2020, 44, 6285-6296.	4.5	5
28	Hydrogen production from the thermochemical conversion of biomass: issues and challenges. Sustainable Energy and Fuels, 2019, 3, 314-342.	4.9	224
29	Nickel Supported on AlCeO3 as a Highly Selective and Stable Catalyst for Hydrogen Production via the Glycerol Steam Reforming Reaction. Catalysts, 2019, 9, 411.	3.5	39
30	A comparative study of molybdenum phosphide catalyst for partial oxidation and dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 11441-11447.	7.1	30
31	Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature. Energy, 2019, 167, 1097-1106.	8.8	36
32	Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: Sorbent to catalyst ratio dependencies. Energy Conversion and Management, 2018, 155, 243-252.	9.2	141
33	Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers. Fuel, 2018, 222, 185-192.	6.4	74
34	Chemical looping glycerol reforming for hydrogen production by Ni@ZrO2 nanocomposite oxygen carriers. International Journal of Hydrogen Energy, 2018, 43, 13200-13211.	7.1	40
35	Sorption enhanced steam reforming of biodiesel by-product glycerol on Ni-CaO-MMT multifunctional catalysts. Chemical Engineering Journal, 2017, 313, 207-216.	12.7	53
36	Hydrogen production and reduction of Ni-based oxygen carriers during chemical looping steam reforming of ethanol in a fixed-bed reactor. International Journal of Hydrogen Energy, 2017, 42, 26217-26230.	7.1	121

BINLIN DOU

#	Article	IF	CITATIONS
37	Hydrogen by chemical looping reforming of ethanol: The effect of promoters on La2-MNiO4- (M= Ca, Sr) Tj ETQq1	1,0.7843 3.8	14.rgBT /O
38	Hydrogen production by chemical looping steam reforming of ethanol using NiO/montmorillonite oxygen carriers in a fixed-bed reactor. Chemical Engineering Journal, 2016, 298, 96-106.	12.7	55
39	Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers. International Journal of Hydrogen Energy, 2016, 41, 17334-17347.	7.1	62
40	Hydrogen production from chemical looping steam reforming of glycerol by Ni based Al-MCM-41 oxygen carriers in a fixed-bed reactor. Fuel, 2016, 183, 170-176.	6.4	48
41	Renewable hydrogen production from chemical looping steam reforming of ethanol using xCeNi/SBA-15 oxygen carriers in a fixed-bed reactor. International Journal of Hydrogen Energy, 2016, 41, 12899-12909.	7.1	55
42	Enhanced hydrogen production by sorption-enhanced steam reforming from glycerol with in-situ CO 2 removal in a fixed-bed reactor. Fuel, 2016, 166, 340-346.	6.4	60
43	Solid sorbents for in-situ CO 2 removal during sorption-enhanced steam reforming process: A review. Renewable and Sustainable Energy Reviews, 2016, 53, 536-546.	16.4	171
44	Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor. Chemical Engineering Journal, 2015, 280, 459-467.	12.7	86
45	Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renewable and Sustainable Energy Reviews, 2014, 30, 950-960.	16.4	193
46	Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors. Applied Energy, 2014, 130, 342-349.	10.1	99
47	Kinetic Study on Non-isothermal Pyrolysis of Sucrose Biomass. Energy & Fuels, 2014, 28, 3793-3801.	5.1	30
48	Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI. Magnetic Resonance Imaging, 2014, 32, 574-584.	1.8	5
49	Coal partial gasification studies applied to co-production of hydrogen and electricity. , 2012, , .		0
50	Numerical Simulation of the Gas Production Behavior of Hydrate Dissociation by Depressurization in Hydrate-Bearing Porous Medium. Energy & Fuels, 2012, 26, 1681-1694.	5.1	52
51	Pyrolysis characteristics of sucrose biomass in a tubular reactor and a thermogravimetric analysis. Fuel, 2012, 95, 425-430.	6.4	34
52	Visualization and Measurement of CO ₂ Flooding in Porous Media Using MRI. Industrial & Engineering Chemistry Research, 2011, 50, 4707-4715.	3.7	101
53	High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. Journal of Hazardous Materials, 2010, 183, 759-765.	12.4	109
54	Steam reforming of crude glycerol with in situ CO2 sorption. Bioresource Technology, 2010, 101, 2436-2442.	9.6	120

BINLIN DOU

#	Article	IF	CITATIONS
55	Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 2009, 100, 2613-2620.	9.6	160
56	Hydrogen production by sorption-enhanced steam reforming of glycerol. Bioresource Technology, 2009, 100, 3540-3547.	9.6	168
57	Kinetic Study in Modeling Pyrolysis of Refuse Plastic Fuel. Energy & Fuels, 2007, 21, 1442-1447.	5.1	29
58	Reaction of Solid Sorbents with Hydrogen Chloride Gas at High Temperature in a Fixed-Bed Reactor. Energy & Fuels, 2005, 19, 2229-2234.	5.1	22
59	High-Temperature HCl Removal with Sorbents in a Fixed-Bed Reactor. Energy & Fuels, 2003, 17, 874-878.	5.1	33