
Michael J Serpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing using a fluorescent product generated from Cu ²⁺ assisted Lâ€Ascorbic acid oxidation. Nano Select, 2022, 3, 723-732.	1.9	0
2	Orthophosphate Quantification in Water Utilizing an Enzymatic Reaction and a Commercial Glucometer Test Strip. Analytical Chemistry, 2022, 94, 2056-2062.	3.2	6
3	A Wirelessly Controlled Shapeâ€Memory Alloyâ€Based Bistable Metal Swimming Device. Advanced Intelligent Systems, 2022, 4, .	3.3	2
4	Multi-responsive micro/nanogels for optical sensing. Advances in Physics: X, 2022, 7, .	1.5	2
5	Design of hydrogel–microgel composites with tailored small molecule release profiles. Journal of Materials Chemistry B, 2022, , .	2.9	1
6	Probing the response of poly (N-isopropylacrylamide) microgels to solutions of various salts using etalons. Journal of Colloid and Interface Science, 2021, 585, 195-204.	5.0	15
7	Highly Efficient Antifouling Coating of Star-Shaped Block Copolymers with Variable Sizes of Hydrophobic Cores and Charge-Neutral Hydrophilic Arms. ACS Applied Polymer Materials, 2021, 3, 1116-1134.	2.0	6
8	Controlled Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Dexamethasone-Loaded Light-Responsive Microgels. ACS Applied Materials & Interfaces, 2021, 13, 7051-7059.	4.0	19
9	Stimuli-Responsive Polymers for Sensing and Reacting to Environmental Conditions. Progress in Polymer Science, 2021, 116, 101386.	11.8	56
10	Recent advances in stimuli-responsive polymers for sensing and actuation. Molecular Systems Design and Engineering, 2021, 6, 108-121.	1.7	18
11	Triggered Small-Molecule Release from Dual-Stimuli Responsive Microgels. ACS Applied Polymer Materials, 2021, 3, 410-417.	2.0	9
12	Enhancing the Sensitivity of Surface Plasmon Resonance Measurements Utilizing Polymer Film/Au Assemblies. Analytical Chemistry, 2021, 93, 16718-16726.	3.2	2
13	Portable point-of-care diagnostic devices: an updated review. Analytical Methods, 2021, 13, 5418-5435.	1.3	13
14	Harnessing the Power of Stimuliâ€Responsive Polymers for Actuation. Advanced Functional Materials, 2020, 30, 1903471.	7.8	88
15	Microgelâ€Based Devices as Wearable Capacitive Electronic Skins for Monitoring Cardiovascular Risks. Advanced Materials Technologies, 2020, 5, 1900818.	3.0	23
16	Bioinspired tissue-compliant hydrogels with multifunctions for synergistic surgery–photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 10117-10125.	2.9	8
17	Stimuli-responsive microgels for controlled deposition of gold nanoparticles on surfaces. Nanoscale Advances, 2020, 2, 5242-5253.	2.2	4
18	Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst, The, 2020, 145, 5713-5724.	1.7	28

#	Article	IF	CITATIONS
19	Stimuli-responsive polymer-based systems for diagnostic applications. Journal of Materials Chemistry B, 2020, 8, 7042-7061.	2.9	37
20	Electronic Skins: Microgelâ€Based Devices as Wearable Capacitive Electronic Skins for Monitoring Cardiovascular Risks (Adv. Mater. Technol. 2/2020). Advanced Materials Technologies, 2020, 5, 2070011.	3.0	3
21	Stimuliâ€Responsive Actuation: Harnessing the Power of Stimuliâ€Responsive Polymers for Actuation (Adv. Funct. Mater. 2/2020). Advanced Functional Materials, 2020, 30, 2070012.	7.8	2
22	Microgel-Based Stretchable Reservoir Devices for Elongation Enhanced Small Molecule Release Rate. ACS Applied Materials & Interfaces, 2020, 12, 19062-19068.	4.0	17
23	Ionoprinting controlled information storage of fluorescent hydrogel for hierarchical and multi-dimensional decryption. Science China Materials, 2019, 62, 831-839.	3.5	51
24	Stimuli-responsive polymers for sensing and actuation. Materials Horizons, 2019, 6, 1774-1793.	6.4	223
25	Volatile organic compound vapor detection with responsive microgel-based etalons. Sensors and Actuators B: Chemical, 2019, 290, 520-526.	4.0	18
26	Stimuli-Responsive Microgel-Based Surface Plasmon Resonance Transducer for Glucose Detection Using a Competitive Assay with Concanavalin A. ACS Applied Polymer Materials, 2019, 1, 519-525.	2.0	27
27	Alkanethiol Molecular Barriers for Controlling Small Molecule Release Kinetics from a Microgel-Based Reservoir Device. ACS Applied Materials & Interfaces, 2019, 11, 47446-47455.	4.0	3
28	Fluorescent Hydrogelâ€Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury(II) Detection. Advanced Materials Technologies, 2019, 4, 1800201.	3.0	46
29	Temperature–Light Dualâ€Responsive Au@PNIPAm Coreâ€Shell Microgelâ€Based Optical Devices. Particle and Particle Systems Characterization, 2019, 36, 1800326.	1.2	22
30	Fine-tuned gel particles enable smart windows for energy efficiency. Nature, 2019, 565, 438-439.	13.7	27
31	Silver nanoparticle-loaded microgel-based etalons for H ₂ O ₂ sensing. RSC Advances, 2018, 8, 15567-15574.	1.7	13
32	Electrically Triggered Small Molecule Release from Poly(<i>N</i> -lsopropylacrylamide- <i>co</i> -Acrylic Acid) Microgel-Modified Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 13124-13129.	4.0	22
33	In Situ Synthesis of CuS Nanoparticle-Doped Poly(N-isopropylacrylamide)-Based Microgels for Near-Infrared Triggered Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 1776-1783.	2.4	19
34	Actuators: Bioinspired Anisotropic Hydrogel Actuators with On–Off Switchable and Colorâ€Tunable Fluorescence Behaviors (Adv. Funct. Mater. 7/2018). Advanced Functional Materials, 2018, 28, 1870043.	7.8	7
35	Enzyme-assisted polymer film degradation-enabled biomolecule sensing with poly (N-isopropylacrylamide)-based optical devices. Analytica Chimica Acta, 2018, 999, 139-143.	2.6	13
36	Poly(N-isopropylacrylamide) microgel-based etalons for the label-free quantitation of estradiol-17β in aqueous solutions and milk samples. Analytical and Bioanalytical Chemistry, 2018, 410, 4397-4407.	1.9	21

#	Article	IF	CITATIONS
37	Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B. Colloids and Surfaces B: Biointerfaces, 2018, 166, 187-194.	2.5	33
38	A Novel Anisotropic Hydrogel with Integrated Selfâ€Deformation and Controllable Shape Memory Effect. Macromolecular Rapid Communications, 2018, 39, e1800019.	2.0	46
39	Polymer-Based Technologies for Sensing Applications. Analytical Chemistry, 2018, 90, 459-479.	3.2	39
40	Bioinspired Anisotropic Hydrogel Actuators with On–Off Switchable and Colorâ€Tunable Fluorescence Behaviors. Advanced Functional Materials, 2018, 28, 1704568.	7.8	353
41	Isolation of RNA from a mixture and its detection by utilizing a microgel-based optical device. Canadian Journal of Chemistry, 2018, 96, 1079-1086.	0.6	6
42	Polyelectrolyte-based physical adhesive hydrogels with excellent mechanical properties for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 4799-4807.	2.9	40
43	Synthesis of poly (<i>N</i> -isopropylacrylamide)- <i>co</i> -(acrylic acid) microgel-entrapped CdS quantum dots and their photocatalytic degradation of an organic dye. RSC Advances, 2018, 8, 16850-16857.	1.7	15
44	Rapidly Responding pH- and Temperature-Responsive Poly (<i>N</i> -Isopropylacrylamide)-Based Microgels and Assemblies. ACS Omega, 2017, 2, 1769-1777.	1.6	61
45	Stimuli-responsive polymers: Fundamental considerations and applications. Macromolecular Research, 2017, 25, 513-527.	1.0	55
46	Supramolecular Hydrogels Fabricated from Supramonomers: A Novel Wound Dressing Material. ACS Applied Materials & Interfaces, 2017, 9, 11368-11372.	4.0	135
47	Reversible bidirectional bending of hydrogel-based bilayer actuators. Journal of Materials Chemistry B, 2017, 5, 2804-2812.	2.9	107
48	Stimuliâ€Responsive Polymers for Actuation. ChemPhysChem, 2017, 18, 1451-1465.	1.0	55
49	Multiresponsive Nanogels for Targeted Anticancer Drug Delivery. Molecular Pharmaceutics, 2017, 14, 2624-2628.	2.3	42
50	Antigen detection using fluorophore-modified antibodies and magnetic microparticles. Sensors and Actuators B: Chemical, 2017, 238, 441-446.	4.0	3
51	Janus Microgels with Tunable Functionality, Polarity, and Optical Properties. Advanced Optical Materials, 2017, 5, 1600614.	3.6	12
52	Stimuli-responsive polymers and their applications. Polymer Chemistry, 2017, 8, 127-143.	1.9	916
53	Stimuli Responsive Polymer-Based 3D Optical Crystals for Sensing. Polymers, 2017, 9, 436.	2.0	10
54	Comparison of the Responsivity of Solution-Suspended and Surface-Bound Poly(<i>N</i> -isopropylacrylamide)-Based Microgels for Sensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 26539-26548.	4.0	26

#	Article	IF	CITATIONS
55	Stimuli-Responsive Assemblies for Sensing Applications. Gels, 2016, 2, 8.	2.1	21
56	Optical Devices Constructed from Ferrocene-Modified Microgels for H ₂ O ₂ Sensing. ACS Applied Materials & Interfaces, 2016, 8, 27264-27269.	4.0	39
57	Poly(N-isopropylacrylamide) microgel-based sensor for progesterone in aqueous samples. Colloid and Polymer Science, 2016, 294, 1733-1741.	1.0	24
58	Supramolecular Microgels Fabricated from Supramonomers. ACS Macro Letters, 2016, 5, 1084-1088.	2.3	33
59	Sequential and controlled release of small molecules from poly(N-isopropylacrylamide) microgel-based reservoir devices. Journal of Materials Chemistry B, 2016, 4, 5144-5150.	2.9	21
60	Portable point-of-care diagnostic devices. Analytical Methods, 2016, 8, 7847-7867.	1.3	58
61	Understanding the Shape Memory Behavior of Selfâ€Bending Materials and Their Use as Sensors. Advanced Functional Materials, 2016, 26, 3282-3290.	7.8	72
62	Biological Imaging and Sensing with Multiresponsive Microgels. Chemistry of Materials, 2016, 28, 259-265.	3.2	81
63	Poly(<i>N</i> â€isopropylacrylamide) microgelâ€based etalons for determining the concentration of ethanol in gasoline. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
64	Responsive Polymerâ€Based Assemblies for Sensing Applications. Macromolecular Rapid Communications, 2015, 36, 1382-1392.	2.0	29
65	Versatile Method for Coating Surfaces with Functional and Responsive Polymer-Based Films. ACS Applied Materials & amp; Interfaces, 2015, 7, 27547-27553.	4.0	21
66	Magnetic field assisted programming of particle shapes and patterns. Soft Matter, 2015, 11, 7151-7158.	1.2	5
67	Photothermally Induced Optical Property Changes of Poly(<i>N</i> -isopropylacrylamide) Microgel-Based Etalons. ACS Applied Materials & Interfaces, 2015, 7, 24370-24376.	4.0	15
68	Poly (<i>N</i> -isopropylacrylamide)- <i>co</i> -(acrylic acid) microgel/Ag nanoparticle hybrids for the colorimetric sensing of H ₂ 0 ₂ . Nanoscale, 2015, 7, 2784-2789.	2.8	61
69	Polymer brush-based optical device with multiple responsivities. Journal of Materials Chemistry B, 2015, 3, 744-747.	2.9	11
70	Controlled release kinetics from a surface modified microgel-based reservoir device. Journal of Materials Chemistry B, 2015, 3, 2516-2521.	2.9	13
71	Reductant-responsive poly(<i>N</i> -isopropylacrylamide) microgels and microgel-based optical materials. Canadian Journal of Chemistry, 2015, 93, 685-689.	0.6	6
72	Stimuli-responsive microgel-based etalons for optical sensing. RSC Advances, 2015, 5, 44074-44087.	1.7	57

#	Article	IF	CITATIONS
73	Lipase-modified pH-responsive microgel-based optical device for triglyceride sensing. Chemical Communications, 2015, 51, 9726-9728.	2.2	50
74	Responsive Polymers as Sensors, Muscles, and Self-Healing Materials. Topics in Current Chemistry, 2015, 369, 377-424.	4.0	8
75	Poly (N-Isopropylacrylamide) microgel-based optical devices for humidity sensing. Analytica Chimica Acta, 2015, 898, 101-108.	2.6	27
76	CO2-switchable poly (N-isopropylacrylamide) microgel-based etalons. Journal of Materials Chemistry C, 2015, 3, 495-498.	2.7	33
77	Stimuli-responsive polymeric materials for human health applications. Science Bulletin, 2014, 59, 4237-4255.	1.7	17
78	Poly (N-isopropylacrylamide) Microgel-Based Optical Devices for Sensing and Biosensing. Sensors, 2014, 14, 8984-8995.	2.1	101
79	Understanding and Controlling the Selfâ€Folding Behavior of Poly (<i>N</i> â€Isopropylacrylamide) Microgelâ€Based Devices. Advanced Functional Materials, 2014, 24, 4119-4126.	7.8	46
80	Non-spherical Janus microgels driven by thiolated DNA interactions. Polymer, 2014, 55, 2340-2346.	1.8	2
81	Optical Devices Constructed from Multiresponsive Microgels. Angewandte Chemie - International Edition, 2014, 53, 4827-4831.	7.2	81
82	Synthesis, Characterization, and Antibacterial Properties of a Hydroxyapatite Adhesive Block Copolymer. Macromolecules, 2014, 47, 8018-8025.	2.2	25
83	Free-standing poly (N-isopropylacrylamide) microgel-based etalons. Journal of Materials Chemistry C, 2014, 2, 5878-5884.	2.7	21
84	Electrochemically color tunable poly(<i>N</i> -isopropylacrylamide) microgel-based etalons. Journal of Materials Chemistry C, 2014, 2, 3873-3878.	2.7	24
85	Responsive polymers for biosensing and protein delivery. Journal of Materials Chemistry B, 2014, 2, 2444-2451.	2.9	50
86	Poly(<i>N</i> -isopropylacrylamide) microgel-based thin film actuators for humidity sensing. RSC Advances, 2014, 4, 31937-31940.	1.7	25
87	Light switchable optical materials from azobenzene crosslinked poly(<i>N</i> -isopropylacrylamide)-based microgels. Journal of Materials Chemistry C, 2014, 2, 6961-6965.	2.7	61
88	Light-Induced Color Changes of Microgel-Based Etalons. ACS Applied Materials & Interfaces, 2014, 6, 8461-8466.	4.0	30
89	Controlled Drug Release from the Aggregation–Disaggregation Behavior of pH-Responsive Microgels. ACS Applied Materials & Interfaces, 2014, 6, 13749-13756.	4.0	52
90	Polymer-based devices for the label-free detection of DNA in solution: low DNA concentrations yield large signals. Analytical and Bioanalytical Chemistry, 2014, 406, 4777-4783.	1.9	27

#	Article	IF	CITATIONS
91	A novel label-free colorimetric assay for DNA concentration in solution. Analytica Chimica Acta, 2014, 843, 83-88.	2.6	24
92	Microgel-based etalon coated quartz crystal microbalances for detecting solution pH: The effect of Au overlayer thickness. Analytica Chimica Acta, 2013, 792, 110-114.	2.6	13
93	Polymerâ€Based Muscle Expansion and Contraction. Angewandte Chemie, 2013, 125, 10520-10523.	1.6	28
94	Recyclability of poly (N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Colloid and Polymer Science, 2013, 291, 1795-1802.	1.0	33
95	Poly (N-isopropylacrylamide) microgel-based etalons constructed from various metal layers. Colloid and Polymer Science, 2013, 291, 1557-1562.	1.0	7
96	Solvent exchange kinetics in poly(N-isopropylacrylamide) microgel-based etalons. Colloid and Polymer Science, 2013, 291, 971-979.	1.0	11
97	Poly (<i>N</i> -isopropylacrylamide) microgel-based etalons and etalon arrays for determining the molecular weight of polymers in solution. APL Materials, 2013, 1, .	2.2	11
98	Responsive polymers, particles, and assemblies, part A. Journal of Polymer Science Part A, 2013, 51, 2979-2979.	2.5	0
99	The Influence of Deposition Solution pH and Ionic Strength on the Quality of Poly(<i>N</i> -isopropylacrylamide) Microgel-Based Thin Films and Etalons. ACS Applied Materials & Interfaces, 2013, 5, 11977-11983.	4.0	22
100	Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution. Chemical Communications, 2013, 49, 2646.	2.2	55
101	Penetration of Polyelectrolytes into Charged Poly(<i>N</i> -isopropylacrylamide) Microgel Layers Confined between Two Surfaces. Macromolecules, 2013, 46, 1599-1606.	2.2	53
102	Controlling the response of color tunable poly(N-isopropylacrylamide) microgel-based etalons with hysteresis. Chemical Communications, 2013, 49, 2649.	2.2	40
103	Label-free detection of low protein concentration in solution using a novel colorimetric assay. Biosensors and Bioelectronics, 2013, 49, 133-138.	5.3	47
104	Responsive polymers for analytical applications: A review. Analytica Chimica Acta, 2013, 789, 17-32.	2.6	82
105	Controlled and Triggered Small Molecule Release from a Confined Polymer Film. ACS Applied Materials & Interfaces, 2013, 5, 9803-9808.	4.0	45
106	Responsive Polymers, Particles, and Assemblies, Part B. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1061-1061.	2.4	0
107	Unexpected Cononsolvency Behavior of Poly (<i>N</i> â€isopropylacrylamide)â€Based Microgels. Macromolecular Rapid Communications, 2013, 34, 1708-1713.	2.0	9
108	Poly (<i>N</i> â€isopropylacrylamide) microgelâ€based assemblies. Journal of Polymer Science Part A, 2013, 51, 3004-3020.	2.5	30

#	Article	IF	CITATIONS
109	Titelbild: Polymerâ€Based Muscle Expansion and Contraction (Angew. Chem. 39/2013). Angewandte Chemie, 2013, 125, 10313-10313.	1.6	0
110	Polymerâ€Based Muscle Expansion and Contraction. Angewandte Chemie - International Edition, 2013, 52, 10330-10333.	7.2	129
111	Color-Tunable Etalons Assembled from Poly (N-Isopropylacrylamide) Based Microgels. Polymers, 2012, 4, 134-149.	2.0	24
112	Liquid–liquid interface assisted synthesis of multifunctional and multicomponent hydrogel particles. Journal of Materials Chemistry, 2012, 22, 20998.	6.7	7
113	Detecting solution pH changes using poly (N-isopropylacrylamide)-co-acrylic acid microgel-based etalon modified quartz crystal microbalances. Analytica Chimica Acta, 2012, 739, 83-88.	2.6	45
114	Color modulation of spatially isolated regions on a single poly(N-isopropylacrylamide) microgel based etalon. Journal of Materials Chemistry, 2012, 22, 8199.	6.7	38
115	Interface assisted synthesis of complex hydrogel particles. Soft Matter, 2012, 8, 10095.	1.2	6
116	Poly(<i>N</i> â€Isopropylacrylamide)â€Based Microgels and Their Assemblies for Organicâ€Molecule Removal from Water. ChemPhysChem, 2012, 13, 2507-2515.	1.0	34
117	Poly (N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects. Colloid and Polymer Science, 2012, 290, 1053-1064.	1.0	29
118	Glucose sensitive poly (N-isopropylacrylamide) microgel based etalons. Analytical and Bioanalytical Chemistry, 2012, 402, 2385-2393.	1.9	76
119	A "Paint-On―Protocol for the Facile Assembly of Uniform Microgel Coatings for Color Tunable Etalon Fabrication. ACS Applied Materials & Interfaces, 2011, 3, 1140-1147.	4.0	79
120	Deswelling Kinetics of Color Tunable Poly(<i>N-</i> Isopropylacrylamide) Microgel-Based Etalons. Journal of Physical Chemistry B, 2011, 115, 14359-14368.	1.2	47
121	Poly (<i>N</i> -Isopropylacrylamide) Microgels for Organic Dye Removal from Water. ACS Applied Materials & Interfaces, 2011, 3, 2732-2737.	4.0	106
122	Poly (<i>N</i> -Isopropylacrylamide) Microgel-Based Assemblies for Organic Dye Removal from Water. ACS Applied Materials & Interfaces, 2011, 3, 4714-4721.	4.0	77
123	Assembly of poly(N-isopropylacrylamide)-co-acrylic acid microgel thin films on polyelectrolyte multilayers: Effects of polyelectrolyte layer thickness, surface charge, and microgel solution pH. Colloid and Polymer Science, 2011, 289, 591-602.	1.0	29
124	The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells. Biomaterials, 2011, 32, 10-18.	5.7	77
125	Color Tunable Poly (<i>N</i> â€Isopropylacrylamide)â€ <i>co</i> â€Acrylic Acid Microgel–Au Hybrid Assemblies. Advanced Functional Materials, 2011, 21, 425-433.	7.8	160
126	Reflection Order Selectivity of Colorâ€Tunable Poly(<i>N</i> â€isopropylacrylamide) Microgel Based Etalons. Advanced Materials, 2011, 23, 4088-4092.	11.1	112

#	Article	IF	CITATIONS
127	Regenerating titanium ventricular assist device surfaces after gold/palladium coating for scanning electron microscopy. Microscopy Research and Technique, 2010, 73, 71-76.	1.2	8
128	Breaking Down the Supramolecular Ensemble: Single-Molecule Studies of the Concentration Dependence of Main-Chain Supramolecular Polymer Molecular Weight Distributions on Surfaces. Australian Journal of Chemistry, 2010, 63, 624.	0.5	0
129	Single-molecule force spectroscopy of DNA-based reversible polymer bridges: Surface robustness and homogeneity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 20-27.	2.3	3
130	A Simple and Practical Spreadsheet-Based Method to Extract Single-Molecule Dissociation Kinetics from Variable Loading-Rate Force Spectroscopy Data. Journal of Physical Chemistry C, 2008, 112, 19163-19167.	1.5	13
131	Time and Distance Dependence of Reversible Polymer Bridging Followed by Single-Molecule Force Spectroscopy. Langmuir, 2008, 24, 4738-4742.	1.6	19
132	In-Situ AFM Studies of the Phase-Transition Behavior of Single Thermoresponsive Hydrogel Particles. Langmuir, 2007, 23, 130-137.	1.6	109
133	Physical Organic Chemistry of Supramolecular Polymers. Langmuir, 2007, 23, 1626-1634.	1.6	159
134	The Principles, Development and Application of Microelectrodes for the In Vivo Determination of Nitric Oxide. Frontiers in Neuroengineering Series, 2006, , 465-487.	0.4	0
135	Pulsatile Release of Insulin from Layer-by-Layer Assembled Microgel Thin Films. Macromolecular Symposia, 2005, 227, 285-294.	0.4	25
136	Photoswitchable Microlens Arrays. Angewandte Chemie - International Edition, 2005, 44, 1333-1336.	7.2	90
137	Hollow Thermoresponsive Microgels. Small, 2005, 1, 416-421.	5.2	142
138	Doxorubicin Uptake and Release from Microgel Thin Films. Biomacromolecules, 2005, 6, 408-413.	2.6	211
139	Optical and Acoustic Studies of pH-Dependent Swelling in Microgel Thin Films. Chemistry of Materials, 2004, 16, 4373-4380.	3.2	67
140	Thermally Modulated Insulin Release from Microgel Thin Films. Biomacromolecules, 2004, 5, 1940-1946.	2.6	186
141	Hydrogel Microparticles as Dynamically Tunable Microlenses. Journal of the American Chemical Society, 2004, 126, 9512-9513.	6.6	155
142	Microgel Colloidal Crystals. Journal of Physical Chemistry B, 2004, 108, 19099-19108.	1.2	219
143	Layer-by-Layer Deposition of Thermoresponsive Microgel Thin Films. Langmuir, 2003, 19, 8759-8764.	1.6	197
144	Microlens Formation in Microgel/Gold Colloid Composite Materials via Photothermal Patterning. Journal of the American Chemical Society, 2003, 125, 5292-5293.	6.6	77