Sergey Evstropiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471596/publications.pdf

Version: 2024-02-01

840776 996975 61 336 11 15 citations h-index g-index papers 62 62 62 112 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Polymer-salt synthesis and characterization of MgO-ZnO ceramic coatings with the high transparency in UV spectral range. Optical Materials, 2018, 82, 81-87.	3.6	22
2	Transparent bactericidal coatings based on zinc and cerium oxides. Ceramics International, 2017, 43, 14504-14510.	4.8	21
3	Synthesis and characterization of transparent photocatalytic ZnO-Sm2O3 and ZnO-Er2O3 coatings. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 458-464.	3.9	20
4	Transparent ZnO-Y2O3 coatings: Bactericidal effect in the lighting and in the darkness. Ceramics International, 2018, 44, 9091-9096.	4.8	18
5	Synthesis and nonlinear optical properties of vanadium-doped plasticized epoxy polymer composites. Advanced Composites and Hybrid Materials, 2021, 4, 324-331.	21.1	17
6	Transparent bactericidal ZnO nanocoatings. Journal of Materials Science: Materials in Medicine, 2017, 28, 102.	3.6	16
7	Photoactive ZnO nanosuspension for intensification of organics contaminations decomposition. Chemical Engineering and Processing: Process Intensification, 2018, 134, 45-50.	3.6	16
8	Antibacterial effect of nanostructured ZnO-SnO2 coatings: The role of microstructure. Materials Today Communications, 2019, 21, 100628.	1.9	16
9	Intensification of photodecomposition of organics contaminations by nanostructured ZnO-SnO2 coatings prepared by polymer-salt method. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107587.	3.6	15
10	Enhanced singlet oxygen photogeneration by bactericidal ZnO–MgO–Ag nanocomposites. Materials Chemistry and Physics, 2022, 276, 125204.	4.0	13
11	Photolysis of Diazo Dye in Solutions and Films Containing Zinc and Silver Oxides. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 774-778.	0.6	12
12	Stabilization of PbS quantum dots by high molecular polyvinylpyrrolidone. Polymers for Advanced Technologies, 2016, 27, 314-317.	3.2	10
13	Some features of luminescent properties of PbS suspensions, stabilized by highâ€molecular polyvinylpyrrolidone. Polymers for Advanced Technologies, 2015, 26, 1097-1101.	3.2	9
14	Photo-stimulated evolution of different structural forms of silver in solutions, composite and oxide coatings. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112858.	3.9	8
15	Singlet Oxygen Generation in Microcapillary Optical Elements with Photoactive Coatings. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 214-219.	0.6	8
16	Nonlinear Optical Properties of CdS/ZnS Quantum Dots in a High-Molecular-Weight Polyvinylpyrrolidone Matrix. Semiconductors, 2018, 52, 997-1003.	0.5	7
17	Silica fibres activated by YAG: Nd ³⁺ nanocrystals. Quantum Electronics, 2019, 49, 1145-1148.	1.0	7
18	Nonlinear optical limiters of pulsed laser radiation based on carbonâ€containing nanostructures in viscous and solid matrices. Polymers for Advanced Technologies, 2014, 25, 1008-1013.	3.2	6

#	Article	IF	CITATIONS
19	Spectral properties of zinc sulfide sols stabilized by high-molecular polyvinylpyrrolidone. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 943-947.	0.6	6
20	Spectral and Luminescence Properties of Sols and Coatings Containing CdS/ZnS QDs and Polyvinylpyrrolidone. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 120, 415-422.	0.6	6
21	Transparent nanocrystalline ZnO and ZnO:Al coatings obtained through ZnS sols. Optical Materials, 2017, 73, 712-717.	3.6	6
22	Formation of Gd2O3:Nd3+ nanocrystals in silica microcapillary preforms and hollow-core anti-resonant optical fibers. Optical Fiber Technology, 2021, 65, 102547.	2.7	6
23	Transparent photocatalytic coatings on the surface of the tips of medical fibre-optic bundles. Quantum Electronics, 2017, 47, 1125-1127.	1.0	5
24	Double stabilization of silver molecular clusters in thin films. Research on Chemical Intermediates, 2020, 46, 4033-4046.	2.7	5
25	Eu-doped BaO-Al2O3-SiO2â^'MgF2 glass and glass ceramics. Journal of Non-Crystalline Solids, 2022, 580, 121386.	3.1	5
26	Forming nanosize Y_2O_3:Eu^3+ coatings on glass surfaces, using solutions containing polyvinylpyrrolidone. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 748.	0.4	4
27	Immersion film-forming compositions based on high-molecular polyvinylpyrrolidone. Polymers for Advanced Technologies, 2016, 27, 1258-1260.	3.2	4
28	Transparent Photoactive ZnO–MgO–Ag2O Films on Glasses. Optics and Spectroscopy (English) Tj ETQq0 C	0 0 rgBT /O	verlock 10 Tf !
29	Study of Fiber Optic Elements Based on a Photoactive Polymer Composition for Sensor Applications. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 127, 746-749.	0.6	4
30	The formation of ZnO-based coatings from solutions containing high-molecular polyvinylpyrrolidone. Technical Physics Letters, 2016, 42, 468-470.	0.7	3
31	The Influence of Polyvinylpyrrolidone Molecular Weight on the Structure and the Spectral and Nonlinear Optical Properties of Composite Materials with CdS/ZnS Nanoparticles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 640-645.	0.6	3
32	Transparent ZnO–SnO2 Photocatalytic Nanocoatings Prepared by the Polymer–Salt Method. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 431-438.	0.6	3
33	Bactericidal properties of ZnO-SnO2 nanocomposites prepared by polymer-salt method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114877.	3.5	3
34	Intermediate products of Yb:YAG laser ceramics fabrication: structural features, morphology, and luminescent properties. Research on Chemical Intermediates, 2021, 47, 3501-3514.	2.7	3
35	Modified Pechini method by PVP addition for Nd:Gd2O3 nanophosphors fabrication. Ceramics International, 2021, 47, 34307-34313.	4.8	3
36	Photoactive UV-A transparent ZnO-Al2O3 coatings for singlet oxygen photogeneration. Optical Engineering, 2019, 58, 1.	1.0	3

#	Article	IF	CITATIONS
37	Nonlinear optical properties of hybridized CdS/ZnS-PVP sols. Journal of Physics: Conference Series, 2017, 917, 062044.	0.4	2
38	Role of the interaction between forming nanocrystals and glass surface on the structure and properties of ZnO-based films. Materials Today Chemistry, 2020, 17, 100291.	3.5	2
39	Modification of the MgO–Al2O3–TiO2–SiO2 Glass by Silver Diffusion for the Formation of Luminescent Molecular Clusters. Doklady Chemistry, 2021, 499, 159-162.	0.9	2
40	Synthesis of Photoactive ZnO–SnO2–Ag(AgCl) Nanomaterials for Medical and Ecological Applications and Study of Their Structure and Properties. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 (O OorgBT/C	v e rlock 10 T
41	Organic phosphor based fiber-optic sensor for detection of UV radiation. Journal of Physics: Conference Series, 2021, 2086, 012155.	0.4	2
42	The Influence of Polyvinylpyrrolidone on the Structure and Optical Properties of ZnO–MgO Nanocomposites Synthesized by the Polymer–Salt Method. Optics and Spectroscopy (English) Tj ETQq0 0 0 rg	BTol. © verlo	cl2 10 Tf 50 !
43	Photodecomposition of organic/inorganic composite materials based on polyvinylpyrrolidone. Journal of Physics: Conference Series, 2018, 1124, 051060.	0.4	1
44	Photoactive ZnO–Al2O3 Transparent Coatings and Nanocomposites Prepared by a Simple Polymer-Salt Synthesis. Semiconductors, 2019, 53, 2082-2084.	0.5	1
45	Synthesis and characterization of PVP/PbI2 nanocomposites. Advanced Composites and Hybrid Materials, 2020, 3, 49-57.	21.1	1
46	Photodestruction of Polyvinylpyrrolidone in Aqueous Solutions of Metal Nitrates. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 1873-1879.	0.6	1
47	Ion Exchange Surface Hardening of Alkali Silicate Glass Using Composite Pastes. Glass Physics and Chemistry, 2020, 46, 510-513.	0.7	1
48	Polymer–Salt Synthesis of Yb:YAG Nanopowders and Study of Their Structure and Luminescent Properties. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2021, 129, 1068-1073.	0.6	1
49	Photo-oxygenation of water media using photoactive plasmonic nanocomposites. Journal of Chemical Physics, 2022, 156, 201103.	3.0	1
50	Sol-gel synthesis of high-silica materials from nepheline-containing concentrate. Glass and Ceramics (English Translation of Steklo I Keramika), 1996, 53, 51-54.	0.6	0
51	Spectral and optical limiting properties of ZnS nano- and bulk crystals. , 2016, , .		0
52	The influence of the polymer-stabilizer molecular weight on the spectral luminescence properties of composite sols and coatings containing PbS quantum dots. Optics and Spectroscopy (English) Tj ETQq0 0 0 rgB	Г/ О werlock	1 00 Tf 50 13
53	Time-evolving photo-induced changes of luminescent and spectral properties of PbS quantum dots sols. Optics Communications, 2016, 366, 282-284.	2.1	0
54	Thin photocatalytic and bactericidal coatings based on carbon or metal oxide nanoparticles. , 2018, , .		0

#	Article	IF	CITATIONS
55	Photoactive Fiber-Optics Endoscope for Oncology. , 2019, , .		O
56	Chemical synthesis and optical properties of composite materials containing PbI ₂ nanoparticles. Journal of Physics: Conference Series, 2019, 1410, 012044.	0.4	0
57	Photolysis of Chicago Sky Blue 6B diazo dye in aqueous solutions containing zinc nitrate and samarium nitrate. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2018, 85, 444.	0.4	O
58	Polymer-salt synthesis of Gd ₂ O ₃ :Nd ³⁺ nanophosphors. Journal of Physics: Conference Series, 2020, 1695, 012184.	0.4	0
59	Design and fabrication of photoactive ZnO-MgO-Ag nanocomposites for medical and environmental applications. Journal of Physics: Conference Series, 2021, 2015, 012097.	0.4	O
60	Silica-Based Optical Fiber Modified with Gd2O3:Nd3+ Nanocrystals., 2020,,.		0
61	Comparative study of the photocatalytic and bactericidal properties of coatings based on metal oxides nanoparticles., 2020,,.		0