

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2471469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Magnetic-Sensing-Based Wide-Bandwidth Grid Impedance Measurement Technique With Small Perturbation Injection. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	2
2	Dynamic Modeling for the Wireless Power Transfer System in Domino Structure. IEEE Transactions on Industrial Electronics, 2022, 69, 3556-3565.	5.2	14
3	Quasi-Static Modeling and Optimization of Two-Layer PCB Resonators in Wireless Power Transfer Systems for 110-kV Power Grid Online Monitoring Equipment. IEEE Transactions on Industrial Electronics, 2022, 69, 1400-1410.	5.2	24
4	Widening the Operating Range of a Wireless Charging System Using Tapped Transmitter Winding and Bifrequency Pulse Train Control. IEEE Transactions on Power Electronics, 2022, 37, 13874-13883.	5.4	6
5	Artificial Neural Network-Based Parameter Identification Method for Wireless Power Transfer Systems. Electronics (Switzerland), 2022, 11, 1415.	1.8	8
6	Electric Spring and Smart Load: Technology, System-Level Impact, and Opportunities. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6524-6544.	3.7	26
7	Analysis and Performance Enhancement of Wireless Power Transfer Systems With Intended Metallic Objects. IEEE Transactions on Power Electronics, 2021, 36, 1388-1398.	5.4	10
8	Smart Lighting Systems as a Demand Response Solution for Future Smart Grids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2362-2370.	3.7	15
9	A Generalized Controller for Electric-Spring-Based Smart Load With Both Active and Reactive Power Compensation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1454-1465.	3.7	28
10	Integration of Flexible Loads and Electric Spring Using a Three-Phase Inverter. IEEE Transactions on Power Electronics, 2020, 35, 8013-8024.	5.4	10
11	Wireless Power Transfer Using Domino-Resonator for 110-kV Power Grid Online Monitoring Equipment. IEEE Transactions on Power Electronics, 2020, 35, 11380-11390.	5.4	59
12	Design, Analysis, and Experimental Verification of a Ball-Joint Structure With Constant Coupling for Capacitive Wireless Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3582-3591.	3.7	12
13	Reconfigurable Wireless Power Transfer Systems for Distance Adaptation. , 2019, , .		4
14	Use of Integrated Photovoltaic-Electric Spring System as a Power Balancer in Power Distribution Networks. IEEE Transactions on Power Electronics, 2019, 34, 5312-5324.	5.4	33
15	A General Design Procedure for Multi-Parallel Modular Grid-Tied Inverters System to Prevent Common and Interactive Instability. IEEE Transactions on Power Electronics, 2019, 34, 6025-6030.	5.4	18
16	An Active EMI Choke for Both Common- and Differential-Mode Noise Suppression. IEEE Transactions on Industrial Electronics, 2018, 65, 4640-4649.	5.2	20
17	A Configuration of Storage System for DC Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 3722-3733.	5.4	57
18	Implementation of Domino Wireless Power Transfer Technology for Power Grid Online Monitoring		6

System. , 2018, , .

Lee, Ck

#	Article	IF	CITATIONS
19	Distance and Misalignment Adaption Analysis of Inductive and Radio Frequency Power Transmission. , 2018, , .		1
20	Use of Adaptive Thermal Storage System as Smart Load for Voltage Control and Demand Response. IEEE Transactions on Smart Grid, 2017, 8, 1231-1241.	6.2	41
21	Use of Smart Loads for Power Quality Improvement. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 504-512.	3.7	65
22	Impedance characteristics of a three-winding common mode choke. , 2017, , .		0
23	A Three-Winding Common Mode Inductor. IEEE Transactions on Power Electronics, 2017, 32, 5180-5187.	5.4	16
24	Extending the Operating Range of Electric Spring Using Back-To-Back Converter: Hardware Implementation and Control. IEEE Transactions on Power Electronics, 2017, 32, 5171-5179.	5.4	72
25	High efficiency bridgeless power factor correction buck converter for high frequency AC systems. , 2016, , .		0
26	A new energy harvesting and wireless power transfer system for Smart Grid. , 2016, , .		17
27	A unified converter topology for Electric Spring. , 2016, , .		2
28	Distributed voltage control with electric springs: Comparison with STATCOM. , 2016, , .		2
29	A survey, classification, and critical review of light-emitting diode drivers. IEEE Transactions on Power Electronics, 2016, 31, 1503-1516.	5.4	197
30	Single-Stage AC/DC Single-Inductor Multiple-Output LED Drivers. IEEE Transactions on Power Electronics, 2016, 31, 5837-5850.	5.4	67
31	Front-end monitoring of multiple loads in wireless power transfer systems without wireless communication systems. IEEE Transactions on Power Electronics, 2016, 31, 2510-2517.	5.4	71
32	A study of high-frequency-fed AC-DC converter with different DC-DC topologies. , 2015, , .		1
33	A tunable common mode inductor with an auxiliary winding network. , 2015, , .		4
34	Distributed grid voltage and utility frequency stabilization via shunt-type electric springs. , 2015, , .		4
35	Mitigating Voltage and Frequency Fluctuation in Microgrids Using Electric Springs. IEEE Transactions on Smart Grid, 2015, 6, 508-515.	6.2	152
36	Electric Springs for Reducing Power Imbalance in Three-Phase Power Systems. IEEE Transactions on Power Electronics, 2015, 30, 3601-3609.	5.4	113

Lee, Ck

#	Article	IF	CITATIONS
37	A Systematic Approach for Load Monitoring and Power Control in Wireless Power Transfer Systems Without Any Direct Output Measurement. IEEE Transactions on Power Electronics, 2015, 30, 1657-1667.	5.4	138
38	Distributed Voltage Control with Electric Springs: Comparison with STATCOM. IEEE Transactions on Smart Grid, 2015, 6, 209-219.	6.2	95
39	High-Frequency-Fed Unity Power-Factor AC–DC Power Converter With One Switching Per Cycle. IEEE Transactions on Power Electronics, 2015, 30, 2148-2156.	5.4	11
40	Reducing three-phase power imbalance with electric springs. , 2014, , .		10
41	Reactive power flow control of grid tie inverter to enhance the stability of power grid. , 2014, , .		5
42	Monitoring of multiple loads in wireless power transfer systems without direct output feedback. , 2014, , .		5
43	Dynamic Modeling of Electric Springs. IEEE Transactions on Smart Grid, 2014, 5, 2450-2458.	6.2	119
44	Hardware and Control Implementation of Electric Springs for Stabilizing Future Smart Grid With Intermittent Renewable Energy Sources. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1, 18-27.	3.7	144
45	Droop Control of Distributed Electric Springs for Stabilizing Future Power Grid. IEEE Transactions on Smart Grid, 2013, 4, 1558-1566.	6.2	109
46	General Steady-State Analysis and Control Principle of Electric Springs With Active and Reactive Power Compensations. IEEE Transactions on Power Electronics, 2013, 28, 3958-3969.	5.4	215
47	Reduction of Energy Storage Requirements in Future Smart Grid Using Electric Springs. IEEE Transactions on Smart Grid, 2013, 4, 1282-1288.	6.2	136
48	Load monitoring and output power control of a wireless power transfer system without any wireless communication feedback. , 2013, , .		14
49	General Analysis on the Use of Tesla's Resonators in Domino Forms for Wireless Power Transfer. IEEE Transactions on Industrial Electronics, 2013, 60, 261-270.	5.2	296
50	Power loss analysis of five-level inverters for grid tie photovoltaic system. , 2013, , .		2
51	On the relationship of quality factor and hollow winding structure of coreless printed spiral winding (CPSW) inductor. IEEE Transactions on Power Electronics, 2012, 27, 3050-3056.	5.4	36
52	Wireless power domino-resonator systems with noncoaxial axes and circular structures. IEEE Transactions on Power Electronics, 2012, 27, 4750-4762.	5.4	151
53	Effects of Magnetic Coupling of Nonadjacent Resonators on Wireless Power Domino-Resonator Systems. IEEE Transactions on Power Electronics, 2012, 27, 1905-1916.	5.4	256
54	Electric Springs—A New Smart Grid Technology. IEEE Transactions on Smart Grid, 2012, 3, 1552-1561.	6.2	377

Lee, Ck

#	Article	IF	CITATIONS
55	Printed Spiral Winding Inductor With Wide Frequency Bandwidth. IEEE Transactions on Power Electronics, 2011, 26, 2936-2945.	5.4	48
56	A Design Methodology for Smart LED Lighting Systems Powered By Weakly Regulated Renewable Power Grids. IEEE Transactions on Smart Grid, 2011, 2, 548-554.	6.2	73
57	State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 2007, 54, 2550-2557.	5.2	370
58	Development, Implementation, and Assessment of a Web-Based Power Electronics Laboratory. IEEE Transactions on Education, 2005, 48, 567-573.	2.0	92
59	Circuit-level comparison of STATCOM technologies. IEEE Transactions on Power Electronics, 2003, 18, 1084-1092.	5.4	144
60	A randomized voltage vector switching scheme for three-level power inverters. IEEE Transactions on Power Electronics, 2002, 17, 94-100.	5.4	35
61	A 31-level cascade inverter for power applications. IEEE Transactions on Industrial Electronics, 2002, 49, 613-617.	5.2	118