
Macarena Sanchez-Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2470841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Target-templated <i>de novo</i> design of macrocyclic <scp>d</scp> -/ <scp>l</scp> -peptides: discovery of drug-like inhibitors of PD-1. Chemical Science, 2021, 12, 5164-5170.	3.7	14
2	Amphiphilic Polymeric Nanoparticles Modified with a Protease-Resistant Peptide Shuttle for the Delivery of SN-38 in Diffuse Intrinsic Pontine Glioma. ACS Applied Nano Materials, 2021, 4, 1314-1329.	2.4	15
3	The Combined Use of Gold Nanoparticles and Infrared Radiation Enables Cytosolic Protein Delivery. Chemistry - A European Journal, 2021, 27, 4670-4675.	1.7	6
4	Advances in peptide-mediated cytosolic delivery of proteins. Advanced Drug Delivery Reviews, 2021, 171, 187-198.	6.6	26
5	Oligoarginine Peptide Conjugated to BSA Improves Cell Penetration of Gold Nanorods and Nanoprisms for Biomedical Applications. Pharmaceutics, 2021, 13, 1204.	2.0	12
6	<i>In vivo</i> micro computed tomography detection and decrease in amyloid load by using multifunctionalized gold nanorods: a neurotheranostic platform for Alzheimer's disease. Biomaterials Science, 2021, 9, 4178-4190.	2.6	14
7	NIR and glutathione trigger the surface release of methotrexate linked by Diels-Alder adducts to anisotropic gold nanoparticles. Materials Science and Engineering C, 2021, 131, 112512.	3.8	10
8	Amphiphilic Polymeric Nanoparticles Modified with a Retro-Enantio Peptide Shuttle Target the Brain of Mice. Chemistry of Materials, 2020, 32, 7679-7693.	3.2	18
9	Peptide Shuttle-Mediated Delivery for Brain Gene Therapies. Current Topics in Medicinal Chemistry, 2020, 20, 2945-2958.	1.0	4
10	Protein Chemical Synthesis Combined with Mirrorâ€Image Phage Display Yields <scp>d</scp> â€Peptide EGF Ligands that Block the EGF–EGFR Interaction. ChemBioChem, 2019, 20, 2079-2084.	1.3	13
11	A Third Shot at EGFR: New Opportunities in Cancer Therapy. Trends in Pharmacological Sciences, 2019, 40, 941-955.	4.0	69
12	Expanding the MiniApâ€4 BBBâ€shuttle family: Evaluation of proline <i>cis</i> â€ <i>trans</i> ratio as tool to fineâ€ŧune transport. Journal of Peptide Science, 2019, 25, e3172.	0.8	5
13	Indoloazepinoneâ€Constrained Oligomers as Cellâ€Penetrating and Blood–Brainâ€Barrierâ€Permeating Compounds. ChemBioChem, 2018, 19, 696-705.	1.3	8
14	From venoms to BBB-shuttles. MiniCTX3: a molecular vector derived from scorpion venom. Chemical Communications, 2018, 54, 12738-12741.	2.2	18
15	Branched BBB-shuttle peptides: chemoselective modification of proteins to enhance blood–brain barrier transport. Chemical Science, 2018, 9, 8409-8415.	3.7	39
16	Peptide Mediated Brain Delivery of Nano- and Submicroparticles: A Synergistic Approach. Current Pharmaceutical Design, 2018, 24, 1366-1376.	0.9	23
17	Blocking EGFR Activation with Antiâ€EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms. Angewandte Chemie, 2018, 130, 14039-14043.	1.6	2
18	Blocking EGFR Activation with Antiâ€EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms, Angewandte Chemie - International Edition, 2018, 57, 13843-13847.	7.2	18

#	Article	IF	CITATIONS
19	<scp>d</scp> â€Polyarginine Lipopeptides as Intestinal Permeation Enhancers. ChemMedChem, 2018, 13, 2045-2052.	1.6	11
20	Blood–brain barrier peptide shuttles. Current Opinion in Chemical Biology, 2017, 38, 134-140.	2.8	43
21	Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomedicine, 2017, 12, 2503-2517.	1.7	41
22	Jumping Hurdles: Peptides Able To Overcome Biological Barriers. Accounts of Chemical Research, 2017, 50, 1847-1854.	7.6	62
23	Just passing through. Nature Chemistry, 2017, 9, 727-728.	6.6	14
24	Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2341-2350.	1.7	60
25	Phage display as a tool to discover blood–brain barrier (<scp>BBB</scp>)â€shuttle peptides: panning against a human <scp>BBB</scp> cellular model. Biopolymers, 2017, 108, e22928.	1.2	23
26	MiniApâ€4: A Venomâ€Inspired Peptidomimetic for Brain Delivery. Angewandte Chemie - International Edition, 2016, 55, 572-575.	7.2	66
27	Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chemical Society Reviews, 2016, 45, 4690-4707.	18.7	318
28	Using peptides to increase transport across the intestinal barrier. Advanced Drug Delivery Reviews, 2016, 106, 355-366.	6.6	38
29	Stable Electron Donor–Acceptor Nanohybrids by Interfacing <i>nâ€</i> Type TCAQ with <i>pâ€</i> Type Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2013, 52, 10216-10220.	7.2	32
30	Glycofullerenes Inhibit Viral Infection. Biomacromolecules, 2013, 14, 431-437.	2.6	134
31	A glycomimetic compound inhibits DC-SIGN-mediated HIV infection in cellular and cervical explant models. Aids, 2012, 26, 127-137.	1.0	58
32	Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nature Communications, 2012, 3, 1303.	5.8	121
33	Synthetic Strategies to Create Dendrimers. Frontiers of Nanoscience, 2012, 4, 143-156.	0.3	7
34	Convergent Synthesis of Glycodendropeptides by Click Chemistry Approaches. European Journal of Organic Chemistry, 2012, 2012, 4565-4573.	1.2	16
35	Multi-molecule reaction of serum albumin can occur through thiol-yne coupling. Chemical Communications, 2011, 47, 11086.	2.2	99
36	Pseudosaccharide Functionalized Dendrimers as Potent Inhibitors of DC-SIGN Dependent Ebola Pseudotyped Viral Infection. Bioconjugate Chemistry, 2011, 22, 1354-1365.	1.8	82

#	Article	IF	CITATIONS
37	Nanorods versus Nanovesicles from Amphiphilic Dendrofullerenes. Journal of the American Chemical Society, 2011, 133, 16758-16761.	6.6	55
38	[60]Fullerene as Multivalent Scaffold: Efficient Molecular Recognition of Globular Glycofullerenes by Concanavalinâ€A. Chemistry - A European Journal, 2011, 17, 766-769.	1.7	85
39	Fullerene sugar balls. Chemical Communications, 2010, 46, 3860.	2.2	169
40	Inhibition of DC-SIGN-Mediated HIV Infection by a Linear Trimannoside Mimic in a Tetravalent Presentation. ACS Chemical Biology, 2010, 5, 301-312.	1.6	115
41	Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins. Chemical Communications, 2010, 46, 8142.	2.2	50
42	Targeting DC-SIGN with carbohydrate multivalent systems. Drug News and Perspectives, 2010, 23, 557.	1.9	36