
## Stephanie Eisner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2469816/publications.pdf Version: 2024-02-01



STEDHANIE FISNED

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Evaluation of two new-generation global soil databases for macro-scale hydrological modelling in<br>Norway. Journal of Hydrology, 2022, 610, 127895.                                                | 2.3 | 7         |
| 2  | Constraining the HBV model for robust water balance assessments in a cold climate. Hydrology Research, 2021, 52, 356-372.                                                                           | 1.1 | 6         |
| 3  | The global water resources and use model WaterGAP v2.2d: model description and evaluation.<br>Geoscientific Model Development, 2021, 14, 1037-1079.                                                 | 1.3 | 139       |
| 4  | Considering the Fate of Evaporated Water Across Basin Boundaries—Implications for Water<br>Footprinting. Environmental Science & Technology, 2021, 55, 10231-10242.                                 | 4.6 | 5         |
| 5  | Evaluating the terrestrial carbon dioxide removal potential of improved forest management and accelerated forest conversion in Norway. Global Change Biology, 2020, 26, 5087-5105.                  | 4.2 | 6         |
| 6  | The fate of land evaporation – a global dataset. Earth System Science Data, 2020, 12, 1897-1912.                                                                                                    | 3.7 | 13        |
| 7  | Influence of Spatial Resolution on Snow Cover Dynamics for a Coastal and Mountainous Region at<br>High Latitudes (Norway). Water Resources Research, 2019, 55, 5612-5630.                           | 1.7 | 8         |
| 8  | Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models. Environmental Modelling and Software, 2019, 114, 112-128.                | 1.9 | 36        |
| 9  | Improvements of the spatially distributed hydrological modelling using the HBV model at 1â€ <sup>-</sup> km<br>resolution for Norway. Journal of Hydrology, 2019, 577, 123585.                      | 2.3 | 26        |
| 10 | Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environmental Research Letters, 2018, 13, 065015.                         | 2.2 | 85        |
| 11 | An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data. Biogeosciences, 2018, 15, 399-412.                                   | 1.3 | 13        |
| 12 | Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences, 2018, 22, 2117-2133.          | 1.9 | 106       |
| 13 | Inferring Surface Albedo Prediction Error Linked to Forest Structure at High Latitudes. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 4910-4925.                                    | 1.2 | 13        |
| 14 | Enhancing the Water Accounting and Vulnerability Evaluation Model: WAVE+. Environmental Science<br>& Technology, 2018, 52, 10757-10766.                                                             | 4.6 | 39        |
| 15 | Adjustment of global precipitation data for enhanced hydrologic modeling of tropical Andean watersheds. Climatic Change, 2017, 141, 547-560.                                                        | 1.7 | 23        |
| 16 | Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models. Climatic Change, 2017, 141, 517-532. | 1.7 | 45        |
| 17 | Multiâ€model and multiâ€scenario assessments of Asian water futures: The Water Futures and Solutions<br>(WFaS) initiative. Earth's Future, 2017, 5, 823-852.                                        | 2.4 | 50        |
| 18 | An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins.<br>Climatic Change, 2017, 141, 401-417.                                                      | 1.7 | 94        |

STEPHANIE EISNER

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change. Climatic Change, 2017, 141, 451-465.                                                | 1.7 | 26        |
| 20 | Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis. Environmental Research Letters, 2017, 12, 105002.                                  | 2.2 | 109       |
| 21 | Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions. Climatic Change, 2017, 141, 467-481.                                                                                | 1.7 | 77        |
| 22 | Toward seamless hydrologic predictions across spatial scales. Hydrology and Earth System Sciences, 2017, 21, 4323-4346.                                                                                                        | 1.9 | 81        |
| 23 | Spatial covariance of ecosystem services and poverty in China. International Journal of Biodiversity Science, Ecosystem Services & Management, 2017, 13, 422-433.                                                              | 2.9 | 5         |
| 24 | A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset. Earth<br>System Science Data, 2017, 9, 389-413.                                                                                    | 3.7 | 169       |
| 25 | Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrology and Earth System Sciences, 2016, 20, 2877-2898.                                        | 1.9 | 151       |
| 26 | Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9, 175-222.                                                       | 1.3 | 379       |
| 27 | Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Clobal Environmental Change, 2016, 40, 156-170.                                                                        | 3.6 | 103       |
| 28 | Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale. Hydrology and Earth System Sciences, 2015, 19, 4081-4098.                                                                         | 1.9 | 32        |
| 29 | Transferable Principles for Managing the Nexus: Lessons from Historical Global Water Modelling of<br>Central Asia. Water (Switzerland), 2015, 7, 4200-4231.                                                                    | 1.2 | 36        |
| 30 | Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change, 2015, 32, 18-29.                                                | 3.6 | 112       |
| 31 | Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological<br>model structure, human water use and calibration. Hydrology and Earth System Sciences, 2014, 18,<br>3511-3538.             | 1.9 | 285       |
| 32 | Annual flood sensitivities to El Niño–Southern Oscillation at the global scale. Hydrology and Earth<br>System Sciences, 2014, 18, 47-66.                                                                                       | 1.9 | 117       |
| 33 | Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.     | 3.3 | 795       |
| 34 | Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3245-3250.                                                           | 3.3 | 1,282     |
| 35 | Global water resources affected by human interventions and climate change. Proceedings of the<br>National Academy of Sciences of the United States of America, 2014, 111, 3251-3256.                                           | 3.3 | 971       |
| 36 | Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation<br>Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environmental Science &<br>Technology, 2014, 48, 4521-4528. | 4.6 | 135       |

STEPHANIE EISNER

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change, 2013, 23, 144-156.                                      | 3.6 | 388       |
| 38 | Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environmental Research Letters, 2013, 8, 024023. | 2.2 | 81        |
| 39 | Multimodel projections and uncertainties of irrigation water demand under climate change.<br>Geophysical Research Letters, 2013, 40, 4626-4632.                                                                    | 1.5 | 302       |
| 40 | Effects of climate model radiation, humidity and wind estimates on hydrological simulations.<br>Hydrology and Earth System Sciences, 2012, 16, 305-318.                                                            | 1.9 | 81        |
| 41 | Large scale modelling of bankfull flow: An example for Europe. Journal of Hydrology, 2011, 408, 235-245.                                                                                                           | 2.3 | 26        |
| 42 | Impact of climate forcing uncertainty and human water use on global and continental water balance components. Proceedings of the International Association of Hydrological Sciences, 0, 374, 53-62.                | 1.0 | 11        |