
Gerty Schreibelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2469648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunological responses to adjuvant vaccination with combined CD1c ⁺ myeloid and plasmacytoid dendritic cells in stage III melanoma patients. OncoImmunology, 2022, 11, .	4.6	14
2	Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncolmmunology, 2022, 11, .	4.6	54
3	Human type 1 and type 2 conventional dendritic cells express indoleamine 2,3â€dioxygenase 1 with functional effects on T cell priming. European Journal of Immunology, 2021, 51, 1494-1504.	2.9	11
4	Challenges of Neoantigen Targeting in Lynch Syndrome and Constitutional Mismatch Repair Deficiency Syndrome. Cancers, 2021, 13, 2345.	3.7	3
5	What does cell therapy manufacturing cost? A framework and methodology to facilitate academic and other small-scale cell therapy manufacturing costings. Cytotherapy, 2020, 22, 388-397.	0.7	29
6	High Health-Related Quality of Life During Dendritic Cell Vaccination Therapy in Patients With Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 536700.	2.8	4
7	Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. OncoImmunology, 2020, 9, 1738814.	4.6	13
8	Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunology, Immunotherapy, 2020, 69, 477-488.	4.2	42
9	Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer. Frontiers in Immunology, 2020, 11, 631713.	4.8	27
10	Human pDCs Are Superior to cDC2s in Attracting Cytolytic Lymphocytes in Melanoma Patients Receiving DC Vaccination. Cell Reports, 2020, 30, 1027-1038.e4.	6.4	29
11	Natural dendritic cell vaccinations generate immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. Annals of Oncology, 2019, 30, v480.	1.2	2
12	Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. , 2019, 7, 302.		72
13	The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. , 2019, 7, 109.		129
14	Health-related quality of life analysis in stage III melanoma patients treated with adjuvant dendritic cell therapy. Clinical and Translational Oncology, 2019, 21, 774-780.	2.4	7
15	PTEN Hamartoma Tumor Syndrome and Immune Dysregulation. Translational Oncology, 2019, 12, 361-367.	3.7	33
16	Development of an RNA-based kit for easy generation of TCR-engineered lymphocytes to control T-cell assay performance. Journal of Immunological Methods, 2018, 458, 74-82.	1.4	5
17	BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target?. Vaccines, 2018, 6, 65.	4.4	13
18	Dendritic Cell Cancer Therapy: Vaccinating the Right Patient at the Right Time. Frontiers in Immunology, 2018, 9, 2265.	4.8	107

#	Article	IF	CITATIONS
19	Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Frontiers in Immunology, 2018, 9, 1412.	4.8	40
20	Naturally produced type I IFNs enhance human myeloid dendritic cell maturation and IL-12p70 production and mediate elevated effector functions in innate and adaptive immune cells. Cancer Immunology, Immunotherapy, 2018, 67, 1425-1436.	4.2	15
21	Myeloid and plasmacytoid dendritic cell vaccinations for castration-resistant prostate cancer patients Journal of Clinical Oncology, 2018, 36, 219-219.	1.6	2
22	Monitoring of dynamic changes in Keyhole Limpet Hemocyanin (KLH)-specific B cells in KLH-vaccinated cancer patients. Scientific Reports, 2017, 7, 43486.	3.3	16
23	Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome. Cancer Letters, 2017, 403, 159-164.	7.2	37
24	A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets. Mediators of Inflammation, 2016, 2016, 1-11.	3.0	57
25	Preventive dendritic cell vaccination in healthy Lynch syndrome mutation carriers. Annals of Oncology, 2016, 27, vi362.	1.2	4
26	Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients. Journal of Immunotherapy, 2016, 39, 241-248.	2.4	26
27	Dendritic Cell–Based Immunotherapy: State of the Art and Beyond. Clinical Cancer Research, 2016, 22, 1897-1906.	7.0	295
28	Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunology, Immunotherapy, 2016, 65, 1249-1259.	4.2	67
29	Adjuvant Dendritic Cell Vaccination in High-Risk Uveal Melanoma. Ophthalmology, 2016, 123, 2265-2267.	5.2	44
30	Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function. Cell Reports, 2016, 16, 2953-2966.	6.4	72
31	Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. Oncolmmunology, 2016, 5, e1191732.	4.6	17
32	Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination. Oncolmmunology, 2016, 5, e1201625.	4.6	21
33	Dendritic cell vaccination in melanoma patients: From promising results to future perspectives. Human Vaccines and Immunotherapeutics, 2016, 12, 2523-2528.	3.3	15
34	Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines. Cancer Research, 2016, 76, 4332-4346.	0.9	93
35	Recurrent candidiasis and early-onset gastric cancer in a patient with a genetically defined partial MYD88 defect. Familial Cancer, 2016, 15, 289-296.	1.9	13
36	Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. Oncolmmunology, 2016, 5, e1057673.	4.6	67

#	Article	IF	CITATIONS
37	Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunology, Immunotherapy, 2016, 65, 327-339.	4.2	50
38	Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells. Clinical Cancer Research, 2016, 22, 2155-2166.	7.0	211
39	Abstract IA44: Cancer prevention: Dendritic cell enhanced immune responses towards neoantigens in patients with Lynch syndrome. , 2016, , .		0
40	532 Skin infiltrating lymphocytes as an early biomarker to predict clinical outcome in stage III melanoma patients receiving adjuvant dendritic cell vaccination. European Journal of Cancer, 2015, 51, S114-S115.	2.8	0
41	Primary Human Blood Dendritic Cells for Cancer Immunotherapy—Tailoring the Immune Response by Dendritic Cell Maturation. Biomedicines, 2015, 3, 282-303.	3.2	22
42	PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by ¹⁹ F MRI. Nanomedicine, 2015, 10, 2339-2348.	3.3	34
43	Protamine-stabilized RNA as an ex vivo stimulant of primary human dendritic cell subsets. Cancer Immunology, Immunotherapy, 2015, 64, 1461-1473.	4.2	47
44	Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncolmmunology, 2015, 4, e1019197.	4.6	55
45	Enterovirus-Infected \hat{I}^2 -Cells Induce Distinct Response Patterns in BDCA1+ and BDCA3+ Human Dendritic Cells. PLoS ONE, 2015, 10, e0121670.	2.5	8
46	Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets. Frontiers in Immunology, 2014, 5, 165.	4.8	127
47	Long Overall Survival After Dendritic Cell Vaccination in Metastatic Uveal Melanoma Patients. American Journal of Ophthalmology, 2014, 158, 939-947.e5.	3.3	53
48	Early predictive value of multifunctional skin-infiltrating lymphocytes in anticancer immunotherapy. Oncolmmunology, 2014, 3, e27219.	4.6	3
49	Crosstalk between dendritic cell subsets and implications for dendritic cell-based anticancer immunotherapy. Expert Review of Clinical Immunology, 2014, 10, 915-926.	3.0	22
50	Dendritic Cell-Based Cancer Vaccines. , 2014, , 69-87.		0
51	Targeting Uptake Receptors on Human Plasmacytoid Dendritic Cells Triggers Antigen Cross-Presentation and Robust Type I IFN Secretion. Journal of Immunology, 2013, 191, 5005-5012.	0.8	98
52	Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood, 2013, 121, 459-467.	1.4	154
53	Targeting CD4+ T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell–Based Vaccination. Cancer Research, 2013, 73, 19-29.	0.9	131
54	Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients. Cancer Research, 2013, 73, 1063-1075.	0.9	295

#	Article	IF	CITATIONS
55	Targeting of 111In-Labeled Dendritic Cell Human Vaccines Improved by Reducing Number of Cells. Clinical Cancer Research, 2013, 19, 1525-1533.	7.0	58
56	Reducing cell number improves the homing of dendritic cells to lymph nodes upon intradermal vaccination. Oncolmmunology, 2013, 2, e24661.	4.6	20
57	Importance of helper T-cell activation in dendritic cell-based anticancer immunotherapy. Oncolmmunology, 2013, 2, e24440.	4.6	11
58	Dendritic Cell-Based Cancer Immunotherapy: Achievements and Novel Concepts. , 2013, , 71-108.		0
59	Vaccination with mRNA-Electroporated Dendritic Cells Induces Robust Tumor Antigen-Specific CD4+ and CD8+ T Cells Responses in Stage III and IV Melanoma Patients. Clinical Cancer Research, 2012, 18, 5460-5470.	7.0	86
60	The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood, 2012, 119, 2284-2292.	1.4	217
61	Skin-Test Infiltrating Lymphocytes Early Predict Clinical Outcome of Dendritic Cell–Based Vaccination in Metastatic Melanoma. Cancer Research, 2012, 72, 6102-6110.	0.9	50
62	Skin-Test Infiltrating Lymphocytes Predict Clinical Outcome of Dendritic Cell Based Vaccination in Metastatic Melanoma. Annals of Oncology, 2012, 23, ix363.	1.2	0
63	Novel Concepts in Dendritic Cell Vaccination against Cancer. AACR Education Book, 2012, 2012, 61-65.	0.0	0
64	Radical changes in multiple sclerosis pathogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 141-150.	3.8	269
65	Route of Administration Modulates the Induction of Dendritic Cell Vaccine–Induced Antigen-Specific T Cells in Advanced Melanoma Patients. Clinical Cancer Research, 2011, 17, 5725-5735.	7.0	158
66	Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunology, Immunotherapy, 2011, 60, 249-260.	4.2	68
67	Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. Journal of Clinical Investigation, 2011, 121, 3100-3108.	8.2	271
68	Oxidative Stress in Multiple Sclerosis Pathology and Therapeutic Potential of Nrf2 Activation. , 2011, , 65-77.		1
69	Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells. Blood, 2010, 116, 564-574.	1.4	86
70	Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunology, Immunotherapy, 2010, 59, 1573-1582.	4.2	220
71	Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Research, 2010, 30, 5091-7.	1.1	67
72	In situ Expression of Tumor Antigens by Messenger RNA–Electroporated Dendritic Cells in Lymph Nodes of Melanoma Patients. Cancer Research, 2009, 69, 2927-2934.	0.9	56

#	Article	IF	CITATIONS
73	Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunology, Immunotherapy, 2009, 58, 1109-1115.	4.2	25
74	Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunology, Immunotherapy, 2008, 57, 1589-1597.	4.2	141
75	Protective effects of peroxiredoxin-1 at the injured blood–brain barrier. Free Radical Biology and Medicine, 2008, 45, 256-264.	2.9	32
76	Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical Biology and Medicine, 2008, 45, 1729-1737.	2.9	252
77	Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB Journal, 2007, 21, 3666-3676.	0.5	294
78	Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Research Reviews, 2007, 56, 322-330.	9.0	153
79	NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radical Biology and Medicine, 2006, 41, 311-317.	2.9	69
80	Lipoic Acid Affects Cellular Migration into the Central Nervous System and Stabilizes Blood-Brain Barrier Integrity. Journal of Immunology, 2006, 177, 2630-2637.	0.8	144
81	Blood–brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis. Brain, 2004, 127, 616-627.	7.6	254
82	CD1 and Major Histocompatibility Complex II Molecules Follow a Different Course during Dendritic Cell Maturation. Molecular Biology of the Cell, 2003, 14, 3378-3388.	2.1	42

Cell Maturation. Molecular Biology of the Cell, 2003, 14, 3378-3388.