Andrzej W Przybyszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2469623/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Striate cortex increases contrast gain of macaque LGN neurons. Visual Neuroscience, 2000, 17, 485-494.	1.0	121
2	Spatial Receptive Field Organization of Macaque V4 Neurons. Cerebral Cortex, 2002, 12, 601-616.	2.9	55
3	EMD APPROACH TO MULTICHANNEL EEG DATA — THE AMPLITUDE AND PHASE COMPONENTS CLUSTERING ANALYSIS. Journal of Circuits, Systems and Computers, 2010, 19, 215-229.	1.5	53
4	Localization of the subthalamic nucleus in Parkinson disease using multiunit activity. Journal of the Neurological Sciences, 2011, 310, 44-49.	0.6	53
5	Responses of retinal ganglion cells to eyeball deformation: A neurophysiological basis for "pressure phosphenes― Vision Research, 1989, 29, 181-194.	1.4	34
6	Multimodal Learning and Intelligent Prediction of Symptom Development in Individual Parkinson's Patients. Sensors, 2016, 16, 1498.	3.8	30
7	An analysis of the oscillatory patterns in the central nervous system with the wavelet method. Journal of Neuroscience Methods, 1991, 38, 247-257.	2.5	25
8	The lateral spread of light adaptation in cat horizontal cell responses. Vision Research, 1993, 33, 1173-1184.	1.4	23
9	Vision: Does top-down processing help us to see?. Current Biology, 1998, 8, R135-R139.	3.9	20
10	Nonlinearity and oscillations in X-type ganglion cells of the cat retina. Vision Research, 1993, 33, 861-875.	1.4	17
11	The Neuromodulatory Impact of Subthalamic Nucleus Deep Brain Stimulation on Gait and Postural Instability in Parkinson's Disease Patients: A Prospective Case Controlled Study. Frontiers in Neurology, 2018, 9, 906.	2.4	17
12	The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory. Lecture Notes in Computer Science, 2008, , 287-317.	1.3	17
13	Logical rules of visual brain: From anatomy through neurophysiology to cognition. Cognitive Systems Research, 2010, 11, 53-66.	2.7	13
14	Primate area V1. NeuroReport, 2014, 25, 1109-1115.	1.2	13
15	Webcamâ€based system for videoâ€oculography. IET Computer Vision, 2017, 11, 173-180.	2.0	13
16	Basic Difference Between Brain and Computer: Integration of Asynchronous Processes Implemented as Hardware Model of the Retina. IEEE Transactions on Neural Networks, 2007, 18, 70-85.	4.2	12
17	Foundations of Recommender System for STN Localization during DBS Surgery in Parkinson's Patients. Lecture Notes in Computer Science, 2012, , 234-243.	1.3	11
18	The effect of dark adaptation on the responses of cat retinal ganglion cells to eyeball deformation. Vision Research, 1989, 29, 1059-1068.	1.4	9

#	Article	IF	CITATIONS
19	Quantification of three-dimensional exploration in the cylinder test by the common marmoset (Callithrix jacchus). Behavioural Brain Research, 2006, 170, 62-70.	2.2	9
20	Multi-parametric analysis assists in STN localization in Parkinson's patients. Journal of the Neurological Sciences, 2016, 366, 37-43.	0.6	9
21	EMD Approach to Multichannel EEG Data - The Amplitude and Phase Synchrony Analysis Technique. Lecture Notes in Computer Science, 2008, , 122-129.	1.3	8
22	Data Mining and Machine Learning on the Basis from Reflexive Eye Movements Can Predict Symptom Development in Individual Parkinson's Patients. Lecture Notes in Computer Science, 2014, , 499-509.	1.3	7
23	A System for Analysis of Tremor in Patients with Parkinson's Disease Based on Motion Capture Technique. Lecture Notes in Computer Science, 2012, , 618-625.	1.3	7
24	Foundations of automatic system for intrasurgical localization of subthalamic nucleus in Parkinson patients. Web Intelligence and Agent Systems, 2014, 12, 63-82.	0.4	6
25	Checking Brain Expertise Using Rough Set Theory. Lecture Notes in Computer Science, 2007, , 746-755.	1.3	6
26	Selection of the Optimal Microelectrode during DBS Surgery in Parkinson's Patients. Lecture Notes in Computer Science, 2011, , 554-564.	1.3	6
27	Optical filtering removes non-homogenous illumination artifacts in optical imaging. Journal of Neuroscience Methods, 2008, 168, 140-145.	2.5	5
28	Theory of Mind Helps to Predict Neurodegenerative Processes in Parkinson's Disease. Lecture Notes in Computer Science, 2021, , 542-555.	1.3	5
29	Parkinson's Disease Development Prediction by C-Granule Computing. Lecture Notes in Computer Science, 2019, , 296-306.	1.3	5
30	Discrimination of the Micro Electrode Recordings for STN Localization during DBS Surgery in Parkinson's Patients. Lecture Notes in Computer Science, 2013, , 328-339.	1.3	5
31	Granular Computing (GC) Demonstrates Interactions Between Depression and Symptoms Development in Parkinson's Disease Patients. Lecture Notes in Computer Science, 2019, , 591-601.	1.3	4
32	SI: SCA Measures – Fuzzy rough set features of cognitive computations in the visual system. Journal of Intelligent and Fuzzy Systems, 2019, 36, 3155-3167.	1.4	4
33	Fuzzy RST and RST Rules Can Predict Effects of Different Therapies in Parkinson's Disease Patients. Lecture Notes in Computer Science, 2018, , 409-416.	1.3	4
34	Rough Set Rules Help to Optimize Parameters of Deep Brain Stimulation in Parkinson's Patients. Lecture Notes in Computer Science, 2014, , 345-356.	1.3	4
35	Spatial asymmetries in cat retinal ganglion cell responses. Biological Cybernetics, 1998, 79, 151-159.	1.3	3
36	Measurements of Antisaccades Parameters Can Improve the Prediction of Parkinson's Disease Progression. Lecture Notes in Computer Science, 2019, , 602-614.	1.3	3

#	Article	IF	CITATIONS
37	Face emotional responses correlate with chaotic dynamics of eye movements. Procedia Computer Science, 2021, 192, 2881-2892.	2.0	3
38	Machine Learning on the Video Basis of Slow Pursuit Eye Movements Can Predict Symptom Development in Parkinson's Patients. Lecture Notes in Computer Science, 2015, , 268-276.	1.3	3
39	Comparison of Different Data Mining Methods to Determine Disease Progression in Dissimilar Groups of Parkinson's Patients. Fundamenta Informaticae, 2020, 176, 167-181.	0.4	3
40	Combining Results of Different Oculometric Tests Improved Prediction of Parkinson's Disease Development. Lecture Notes in Computer Science, 2020, , 517-526.	1.3	3
41	Fuzzy Rough Sets Theory Applied to Parameters of Eye Movements Can Help to Predict Effects of Different Treatments in Parkinson's Patients. Lecture Notes in Computer Science, 2015, , 325-334.	1.3	2
42	Data mining using SPECT can predict neurological symptom development in Parkinson's patients. , 2015, , .		2
43	The potential neuromodulatory impact of subthalamic nucleus deep brain stimulation on Parkinson's disease progression. Journal of Clinical Neuroscience, 2020, 73, 150-154.	1.5	2
44	Rules Determine Therapy-Dependent Relationship in Symptoms Development of Parkinson's Disease Patients. Lecture Notes in Computer Science, 2018, , 436-445.	1.3	2
45	IGrC: Cognitive and Motor Changes During Symptoms Development in Parkinson's Disease Patients. Lecture Notes in Computer Science, 2020, , 548-559.	1.3	2
46	Al Classifications Applied to Neuropsychological Trials in Normal Individuals that Predict Progression to Cognitive Decline. Lecture Notes in Computer Science, 2022, , 150-156.	1.3	2
47	Overview of Otto-Joachim Grüsser's work. Biological Cybernetics, 1997, 76, 317-320.	1.3	1
48	Letter to the Editor: Deep brain stimulation. Journal of Neurosurgery, 2013, 119, 1080-1081.	1.6	1
49	Theory of Mind and Empathy. Part I - Model of Social Emotional Thinking. Fundamenta Informaticae, 2017, 150, 221-230.	0.4	1
50	Parkinson's disease development prediction by c-granule computing compared to different AI methods. Journal of Information and Telecommunication, 2020, 4, 425-439.	2.8	1
51	Building Intelligent Classifiers for Doctor-Independent Parkinson's Disease Treatments. Advances in Intelligent Systems and Computing, 2016, , 267-276.	0.6	1
52	Rough Set Based Classifications of Parkinson's Patients Gaits. Lecture Notes in Computer Science, 2014, , 525-534.	1.3	1
53	Frequency Based Mapping of the STN Borders. Lecture Notes in Computer Science, 2015, , 386-395.	1.3	1
54	Eye-Tracking and Machine Learning Significance in Parkinson's Disease Symptoms Prediction. Lecture Notes in Computer Science, 2020, , 537-547.	1.3	1

#	Article	IF	CITATIONS
55	Otto-Joachim Gr�sser 1932-1995. Biological Cybernetics, 1997, 76, 315-315.	1.3	о
56	Activity of common marmosets (Callithrix jacchus) in limited spaces: Hand movement characteristics Journal of Comparative Psychology (Washington, D C: 1983), 2007, 121, 332-344.	0.5	0
57	Neurological Foundation of Image Processing. , 2009, , .		0
58	Rough Set Rules Determine Disease Progressions in Different Groups of Parkinson's Patients. Lecture Notes in Computer Science, 2017, , 270-275.	1.3	0
59	DTI Helps to Predict Parkinson's Patient's Symptoms Using Data Mining Techniques. Lecture Notes in Computer Science, 2019, , 615-623.	1.3	Ο
60	Influence of Bilateral Subthalamic Nucleus Deep Brain Stimulation on the Lipid Profile in Patients With Parkinson's Disease. Frontiers in Neurology, 2020, 11, 563445.	2.4	0
61	Rough Set Theory of Shape Perception. Lecture Notes in Computer Science, 2007, , 738-749.	1.3	Ο
62	Intraoperative Decision Making with Rough Set Rules for STN DBS in Parkinson Disease. Lecture Notes in Computer Science, 2014, , 323-334.	1.3	0
63	Spike Sorting Based upon PCA over DWT Frequency Band Selection. Lecture Notes in Computer Science, 2014, , 154-163.	1.3	Ο
64	Expert Group Collaboration Tool for Collective Diagnosis of Parkinson Disease. Lecture Notes in Computer Science, 2015, , 248-257.	1.3	0
65	Rules Found by Multimodal Learning in One Group of Patients Help to Determine Optimal Treatment to Other Group of Parkinson's Patients. Lecture Notes in Computer Science, 2017, , 359-367.	1.3	Ο
66	Evaluating reflexive saccades and UDPRS as markers of Deep Brain Stimulation and Best Medical Treatment improvements in Parkinson's disease patients: a prospective controlled study. Neurologia I Neurochirurgia Polska, 2019, 53, 341-347.	1.2	0
67	Machine Learning and Statistical MAP Methods. , 2005, , 441-445.		Ο
68	Interactions between Rough Parts in Object Perception. , 2008, , 236-245.		0
69	Rough Set Theory of Pattern Classification in the Brain. , 2007, , 295-303.		0