Lara Matia-Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2469374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycaemic potency reduction by coarse grain structure in breads is largely eliminated during normal ingestion. British Journal of Nutrition, 2022, 127, 1497-1505.	2.3	1
2	Emulsification properties of Puka Gum – An exudate of a native New Zealand tree (Meryta sinclairii): Effect of shear rate and Gum concentration. Food Hydrocolloids, 2022, 124, 107263.	10.7	1
3	Characterisation of de-structured starch and its shear-thickening mechanism. Food Hydrocolloids, 2022, 132, 107864.	10.7	3
4	Complexation of Anthocyanin-Bound Blackcurrant Pectin and Whey Protein: Effect of pH and Heat Treatment. Molecules, 2022, 27, 4202.	3.8	7
5	Characterization of Anthocyanin-Bound Pectin-Rich Fraction Extracted from New Zealand Blackcurrant (<i>Ribes nigrum</i>) Juice. ACS Food Science & Technology, 2021, 1, 1130-1142.	2.7	7
6	Molecular and physico-chemical characterization of de-structured waxy potato starch. Food Hydrocolloids, 2021, 117, 106667.	10.7	10
7	Rheological characterization of a physically-modified waxy potato starch: Investigation of its shear-thickening mechanism. Food Hydrocolloids, 2021, 120, 106908.	10.7	17
8	The effect of gel structure on the <i>in vitro</i> digestibility of wheat starch- <i>Mesona chinensis</i> polysaccharide gels. Food and Function, 2019, 10, 250-258.	4.6	27
9	The interactions between wheat starch and Mesona chinensis polysaccharide: A study using solid-state NMR. Food Chemistry, 2019, 284, 67-72.	8.2	22
10	Molecular, rheological and physicochemical characterisation of puka gum, an arabinogalactan-protein extracted from the Meryta sinclairii tree. Carbohydrate Polymers, 2019, 220, 247-255.	10.2	14
11	Extruded Maize Flour as Texturizing Agent in Acid-Unheated Skim Milk Gels. Food and Bioprocess Technology, 2019, 12, 990-999.	4.7	3
12	The role of calcium in wheat starch-Mesona chinensis polysaccharide gels: Rheological properties, in vitro digestibility and enzyme inhibitory activities. LWT - Food Science and Technology, 2019, 99, 202-208.	5.2	19
13	Effect of Tween Emulsifiers on the Shear Stability of Partially Crystalline Oil-in-Water Emulsions Stabilized By Sodium Caseinate. Food Biophysics, 2018, 13, 80-90.	3.0	14
14	Molecular interactions in composite wheat starch-Mesona chinensis polysaccharide gels: Rheological, textural, microstructural and retrogradation properties. Food Hydrocolloids, 2018, 79, 1-12.	10.7	54
15	Understanding the interaction between wheat starch and Mesona chinensis polysaccharide. LWT - Food Science and Technology, 2017, 84, 212-221.	5.2	40
16	The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydrate Polymers, 2016, 149, 297-307.	10.2	100
17	Emulsifying properties of basil seed gum: Effect of pH and ionic strength. Food Hydrocolloids, 2016, 52, 838-847.	10.7	57
18	Time- and shear history-dependence of the rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris. Journal of Rheology, 2015, 59, 365-376.	2.6	10

Lara Matia-Merino

#	Article	IF	CITATIONS
19	Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydrate Polymers, 2015, 123, 136-145.	10.2	40
20	Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chemistry, 2015, 187, 290-296.	8.2	96
21	The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide. Carbohydrate Polymers, 2015, 130, 57-68.	10.2	14
22	Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods. Food Chemistry, 2015, 166, 479-485.	8.2	74
23	Complex coacervation of an arabinogalactan-protein extracted from the Meryta sinclarii tree (puka) Tj ETQq1 1 0	.784314 r 10.7	rgBT /Overloc
24	Structure of a shear-thickening polysaccharide extracted from the New Zealand black tree fern, Cyathea medullaris. International Journal of Biological Macromolecules, 2014, 70, 86-91.	7.5	37
25	Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocolloids, 2014, 37, 40-48.	10.7	113
26	Characterisation of gold kiwifruit pectin isolated by enzymatic treatment. International Journal of Food Science and Technology, 2012, 47, 633-639.	2.7	14
27	A natural shear-thickening water-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: Influence of salt, pH and temperature. Carbohydrate Polymers, 2012, 87, 131-138.	10.2	32
28	Molecular characteristics of a novel water-soluble polysaccharide from the New Zealand black tree fern (Cyathea medullaris). Food Hydrocolloids, 2011, 25, 286-292.	10.7	29
29	Effect of Celluclast 1.5L on the Physicochemical Characterization of Gold Kiwifruit Pectin. International Journal of Molecular Sciences, 2011, 12, 6407-6417.	4.1	23
30	Optimisation study of gum extraction from Basil seeds (<i>Ocimum basilicum</i> L.). International Journal of Food Science and Technology, 2009, 44, 1755-1762.	2.7	168
31	Exploiting the Functionality of Lactic Acid Bacteria in Ice Cream. Food Biophysics, 2008, 3, 295-304.	3.0	11
32	The Relationship Between Wheat Flour and Starch Pasting Properties and Starch Hydrolysis: Effect of Nonâ€starch Polysaccharides in a Starch Gel System. Starch/Staerke, 2008, 60, 23-33.	2.1	34
33	Effect of extraction techniques and conditions on the physicochemical properties of the water soluble polysaccharides from gold kiwifruit (<i>Actinidia chinensis</i>). International Journal of Food Science and Technology, 2008, 43, 2268-2277.	2.7	30
34	Gel and Pasting Behaviour of Fenugreek-Wheat Starch and Fenugreek – Wheat Flour Combinations. Starch/Staerke, 2006, 58, 527-535.	2.1	27
35	Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 2006, 86, 2038-2045.	3.5	254