Y-L Chueh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2469245/publications.pdf Version: 2024-02-01

V-I Снибн

#	Article	IF	CITATIONS
1	Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials, 2009, 8, 648-653.	13.3	997
2	Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014, 4, 3826.	1.6	771
3	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
4	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	7.3	596
5	Dual-Gated MoS ₂ /WSe ₂ van der Waals Tunnel Diodes and Transistors. ACS Nano, 2015, 9, 2071-2079.	7.3	560
6	Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature, 2010, 468, 286-289.	13.7	373
7	Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 2018, 12, 601-607.	15.6	366
8	Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials, 2009, 21, 3730-3743.	11.1	363
9	Diameter-Dependent Electron Mobility of InAs Nanowires. Nano Letters, 2009, 9, 360-365.	4.5	353
10	Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Letters, 2010, 10, 3823-3827.	4.5	269
11	pâ€Type InP Nanopillar Photocathodes for Efficient Solarâ€Driven Hydrogen Production. Angewandte Chemie - International Edition, 2012, 51, 10760-10764.	7.2	245
12	Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process. Advanced Functional Materials, 2006, 16, 2243-2251.	7.8	238
13	Metal-catalyzed crystallization of amorphous carbon to graphene. Applied Physics Letters, 2010, 96, .	1.5	234
14	Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Letters, 2017, 17, 523-530.	4.5	232
15	Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons. Chemistry of Materials, 2016, 28, 425-429.	3.2	220
16	Honeycomb-like Porous Carbon–Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications. ACS Applied Materials & Interfaces, 2015, 7, 15812-15820.	4.0	216
17	Wafer Scale Phaseâ€Engineered 1T―and 2Hâ€MoSe ₂ /Mo Core–Shell 3Dâ€Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 9831-9838.	11.1	208
18	13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell <i>via</i> Interface Engineering. ACS Nano, 2013, 7, 10780-10787.	7.3	194

#	Article	IF	CITATIONS
19	Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2. Journal of Applied Physics, 2005, 97, 094306.	1.1	178
20	Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current. Applied Physics Letters, 2005, 87, 172901.	1.5	152
21	Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires. ACS Nano, 2012, 6, 9366-9372.	7.3	149
22	Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Science Advances, 2017, 3, e1602557.	4.7	142
23	Hollow NiCo ₂ S ₄ Nanospheres Hybridized with 3D Hierarchical Porous rGO/Fe ₂ O ₃ Composites toward Highâ€Performance Energy Storage Device. Advanced Energy Materials, 2018, 8, 1703453.	10.2	142
24	RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires: From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties. Advanced Materials, 2007, 19, 143-149.	11.1	139
25	ZnO _{1–<i>x</i>} Nanorod Arrays/ZnO Thin Film Bilayer Structure: From Homojunction Diode and High-Performance Memristor to Complementary 1D1R Application. ACS Nano, 2012, 6, 8407-8414.	7.3	132
26	Manipulated Transformation of Filamentary and Homogeneous Resistive Switching on ZnO Thin Film Memristor with Controllable Multistate. ACS Applied Materials & Interfaces, 2013, 5, 6017-6023.	4.0	129
27	Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56, 322-329.	8.2	125
28	Single CuO _{<i>x</i>} Nanowire Memristor: Forming-Free Resistive Switching Behavior. ACS Applied Materials & Interfaces, 2014, 6, 16537-16544.	4.0	124
29	Electrostatically Charged MoS ₂ /Graphene Oxide Hybrid Composites for Excellent Electrochemical Energy Storage Devices. ACS Applied Materials & Interfaces, 2018, 10, 35571-35579.	4.0	113
30	pâ€Type αâ€Fe ₂ O ₃ Nanowires and their nâ€Type Transition in a Reductive Ambient. Small, 2007, 3, 1356-1361.	5.2	110
31	Controlled growth of carbon nanotube–graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale, 2012, 4, 632-638.	2.8	110
32	Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties. Small, 2007, 3, 658-664.	5.2	109
33	Monolithic 3D CMOS Using Layered Semiconductors. Advanced Materials, 2016, 28, 2547-2554.	11.1	107
34	Magnetic and Electrical Characterizations of Halfâ€Metallic Fe ₃ O ₄ Nanowires. Advanced Materials, 2007, 19, 2290-2294.	11.1	105
35	Single-Crystalline Branched Zinc Phosphide Nanostructures:Â Synthesis, Properties, and Optoelectronic Devices. Nano Letters, 2007, 7, 269-275.	4.5	104
36	TaSi2 Nanowires:  A Potential Field Emitter and Interconnect. Nano Letters, 2006, 6, 1637-1644.	4.5	102

#	Article	IF	CITATIONS
37	Wafer-Scale Growth of WSe ₂ Monolayers Toward Phase-Engineered Hybrid WO _{<i>x</i>} /WSe ₂ Films with Sub-ppb NO _{<i>x</i>} Gas Sensing by a Low-Temperature Plasma-Assisted Selenization Process. Chemistry of Materials, 2017, 29, 1587-1598.	3.2	99
38	Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes. Nano Letters, 2011, 11, 5008-5012.	4.5	97
39	An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core–shell nanoparticles. Journal of Materials Chemistry C, 2018, 6, 5514-5520.	2.7	88
40	A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS ₂ /α-MoO ₃ hybrid heterostructured nanoflowers. Journal of Materials Chemistry A, 2018, 6, 15320-15329.	5.2	86
41	Nanoscale InGaSb Heterostructure Membranes on Si Substrates for High Hole Mobility Transistors. Nano Letters, 2012, 12, 2060-2066.	4.5	85
42	A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics. Progress in Quantum Electronics, 2019, 68, 100226.	3.5	85
43	Perovskite Quantum Dots with Near Unity Solution and Neatâ€Film Photoluminescent Quantum Yield by Novel Spray Synthesis. Advanced Materials, 2018, 30, 1705532.	11.1	84
44	Phaseâ€Engineered PtSe ₂ â€Layered Films by a Plasmaâ€Assisted Selenization Process toward All PtSe ₂ â€Based Field Effect Transistor to Highly Sensitive, Flexible, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1800032.	5.2	83
45	Significant Efficiency Enhancement of Hybrid Solar Cells Using Core–Shell Nanowire Geometry for Energy Harvesting. ACS Nano, 2011, 5, 9501-9510.	7.3	80
46	Supersensitive, Ultrafast, and Broad-Band Light-Harvesting Scheme Employing Carbon Nanotube/TiO ₂ Core–Shell Nanowire Geometry. ACS Nano, 2012, 6, 6687-6692.	7.3	80
47	Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 13320-13328.	5.2	77
48	Synthesis of taperlike Si nanowires with strong field emission. Applied Physics Letters, 2005, 86, 133112.	1.5	76
49	Ultra-Fast Synthesis of Graphene and Highly Oriented Graphite by Rapid Microwave Heating Process. Science of Advanced Materials, 2014, 6, 1-8.	0.1	75
50	Highly stable nitrogen-doped carbon nanotubes derived from carbon dots and metal-organic frameworks toward excellent efficient electrocatalyst for oxygen reduction reaction. Nano Energy, 2019, 63, 103788.	8.2	74
51	Hybridizing Plasmonic Materials with 2Dâ€Transition Metal Dichalcogenides toward Functional Applications. Small, 2020, 16, e1904271.	5.2	74
52	Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study. Applied Surface Science, 2021, 536, 147933.	3.1	72
53	Nanoscale doping of InAs via sulfur monolayers. Applied Physics Letters, 2009, 95, .	1.5	71
54	Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Applied Physics Letters, 2013, 102, .	1.5	71

#	Article	IF	CITATIONS
55	Monolayer Resist for Patterned Contact Printing of Aligned Nanowire Arrays. Journal of the American Chemical Society, 2009, 131, 2102-2103.	6.6	70
56	Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nature Communications, 2019, 10, 1664.	5.8	70
57	Low-Temperature Chemical Synthesis of CoWO ₄ Nanospheres for Sensitive Nonenzymatic Glucose Sensor. Journal of Physical Chemistry C, 2016, 120, 17024-17028.	1.5	69
58	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
59	Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays. Nano Letters, 2010, 10, 520-523.	4.5	68
60	Highly Stable Three-Dimensional Nickel–Cobalt Hydroxide Hierarchical Heterostructures Hybridized with Carbon Nanotubes for High-Performance Energy Storage Devices. ACS Nano, 2019, 13, 11235-11248.	7.3	67
61	Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light–Matter Interaction toward Excellent Photodetectors. ACS Nano, 2017, 11, 8768-8776.	7.3	66
62	Epitaxial Photostriction–Magnetostriction Coupled Self-Assembled Nanostructures. ACS Nano, 2012, 6, 6952-6959.	7.3	63
63	Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction. Nano Letters, 2008, 8, 4528-4533.	4.5	61
64	Hybrid Coreâ^'Shell Nanowire Forests as Self-Selective Chemical Connectors. Nano Letters, 2009, 9, 2054-2058.	4.5	59
65	Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 109-115.	7.1	59
66	Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors. ACS Nano, 2011, 5, 6008-6015.	7.3	58
67	Pentacene organic thin-film transistors with solution-based gelatin dielectric. Organic Electronics, 2013, 14, 1170-1176.	1.4	58
68	Recycling and recovery of perovskite solar cells. Materials Today, 2021, 43, 185-197.	8.3	58
69	SiO2/Ta2O5 Core–Shell Nanowires and Nanotubes. Angewandte Chemie - International Edition, 2006, 45, 7773-7778.	7.2	57
70	Patterned p-Doping of InAs Nanowires by Gas-Phase Surface Diffusion of Zn. Nano Letters, 2010, 10, 509-513.	4.5	57
71	Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries. ACS Nano, 2020, 14, 8539-8550.	7.3	57
72	An Emerging Energy Storage System: Advanced Na–Se Batteries. ACS Nano, 2021, 15, 5876-5903.	7.3	56

#	Article	IF	CITATIONS
73	Large Scale Single-Crystal Cu(In,Ga)Se ₂ Nanotip Arrays For High Efficiency Solar Cell. Nano Letters, 2011, 11, 4443-4448.	4.5	54
74	A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiOx core–shell nanoparticles. Nanoscale, 2014, 6, 4555.	2.8	54
75	Ferroelectricity of HfZrO ₂ in Energy Landscape With Surface Potential Gain for Low-Power Steep-Slope Transistors. IEEE Journal of the Electron Devices Society, 2015, 3, 377-381.	1.2	54
76	Pressure Welding of Silver Nanowires Networks at Room Temperature as Transparent Electrodes for Efficient Organic Lightâ€Emitting Diodes. Small, 2018, 14, e1800541.	5.2	54
77	New Simultaneous Exfoliation and Doping Process for Generating MX ₂ Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 14786-14795.	4.0	54
78	Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation. Nanoscale Research Letters, 2012, 7, 559.	3.1	53
79	Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. Journal of Materials Chemistry, 2012, 22, 17432.	6.7	52
80	Stability scheme of ZnO-thin film resistive switching memory: influence of defects by controllable oxygen pressure ratio. Nanoscale Research Letters, 2013, 8, 483.	3.1	52
81	Toward Efficient and Omnidirectional n-Type Si Solar Cells: Concurrent Improvement in Optical and Electrical Characteristics by Employing Microscale Hierarchical Structures. ACS Nano, 2014, 8, 2959-2969.	7.3	52
82	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Largeâ€Area Mass Production. Advanced Materials Interfaces, 2019, 6, 1801758.	1.9	52
83	Antisymmetric Magnetoresistance in a van der Waals Antiferromagnetic/Ferromagnetic Layered MnPS ₃ /Fe ₃ GeTe ₂ Stacking Heterostructure. ACS Nano, 2020, 14, 12037-12044.	7.3	52
84	Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (OÂOÂ1) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Applied Surface Science, 2020, 514, 145927.	3.1	52
85	Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films. Nanotechnology, 2011, 22, 295606.	1.3	51
86	Design of Lamellar Mo ₂ C Nanosheets Assembled by Mo ₂ C Nanoparticles as an Anode Material toward Excellent Sodium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 18375-18383.	3.2	51
87	Opportunities and Challenges in Precise Synthesis of Transition Metal Singleâ€Atom Supported by 2D Materials as Catalysts toward Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2103558.	7.8	51
88	Design of Core–Shell Quantum Dots–3D WS ₂ Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano, 2020, 14, 12668-12678.	7.3	49
89	Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage. Energy Storage Materials, 2021, 34, 45-52.	9.5	48
90	Plasma-Assisted Synthesis of High-Mobility Atomically Layered Violet Phosphorus. ACS Applied Materials & Interfaces, 2015, 7, 13723-13727.	4.0	47

#	Article	IF	CITATIONS
91	Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Advances, 2016, 6, 60643-60656.	1.7	47
92	Artificial Synapse Based on a 2D-SnO ₂ Memtransistor with Dynamically Tunable Analog Switching for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2021, 13, 52822-52832.	4.0	47
93	Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. Nano Energy, 2012, 1, 424-428.	8.2	46
94	RuO2/MnO2 core–shell nanorods for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8753.	5.2	46
95	Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles. Nano Energy, 2016, 25, 218-224.	8.2	46
96	High-Performance Rechargeable Aluminum–Selenium Battery with a New Deep Eutectic Solvent Electrolyte: Thiourea-AlCl ₃ . ACS Applied Materials & Interfaces, 2020, 12, 27064-27073.	4.0	46
97	High Uniformity of Resistive Switching Characteristics in a Cr/ZnO/Pt Device. Journal of the Electrochemical Society, 2012, 159, G29-G32.	1.3	45
98	Highly Effective Field-Effect Mobility Amorphous InGaZnO TFT Mediated by Directional Silver Nanowire Arrays. ACS Applied Materials & Interfaces, 2015, 7, 232-240.	4.0	45
99	Direct growth of single-crystalline III–V semiconductors on amorphous substrates. Nature Communications, 2016, 7, 10502.	5.8	45
100	Flexible Carbonâ€Nanofiber Connectors with Anisotropic Adhesion Properties. Small, 2010, 6, 22-26.	5.2	44
101	Large-Scale Production of NbS2 Nanowires and Their Performance in Electronic Field Emission. Angewandte Chemie - International Edition, 2004, 43, 5670-5674.	7.2	42
102	Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization. Scientific Reports, 2014, 4, 4739.	1.6	42
103	Phase-modulated 3D-hierarchical 1T/2H WSe ₂ nanoscrews by a plasma-assisted selenization process as high performance NO gas sensors with a ppb-level detection limit. Journal of Materials Chemistry A, 2019, 7, 22314-22322.	5.2	42
104	A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells. Materials Chemistry and Physics, 2019, 234, 329-344.	2.0	42
105	An indoor light-activated 3D cone-shaped MoS ₂ bilayer-based NO gas sensor with PPb-level detection at room-temperature. Nanoscale, 2019, 11, 10410-10419.	2.8	42
106	Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors. Journal of Physical Chemistry C, 2012, 116, 9750-9754.	1.5	41
107	GaAs Nanowires: From Manipulation of Defect Formation to Controllable Electronic Transport Properties. ACS Nano, 2013, 7, 9138-9146.	7.3	41
108	Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode. Chemistry of Materials, 2015, 27, 1646-1655.	3.2	41

#	Article	IF	CITATIONS
109	Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Applied Physics Letters, 2011, 99, .	1.5	40
110	Direct formation of large-scale multi-layered germanene on Si substrate. Physical Chemistry Chemical Physics, 2015, 17, 21389-21393.	1.3	40
111	Self-Selecting Resistive Switching Scheme Using TiO2 Nanorod Arrays. Scientific Reports, 2017, 7, 2066.	1.6	40
112	Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition. Crystal Growth and Design, 2011, 11, 4970-4974.	1.4	39
113	Dynamic Observation of Phase Transformation Behaviors in Indium(III) Selenide Nanowire Based Phase Change Memory. ACS Nano, 2014, 8, 9457-9462.	7.3	39
114	Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted Selenization Process. ACS Nano, 2015, 9, 4346-4353.	7.3	39
115	Environmentally and Mechanically Stable Selenium 1D/2D Hybrid Structures for Broad-Range Photoresponse from Ultraviolet to Infrared Wavelengths. ACS Applied Materials & Interfaces, 2018, 10, 35477-35486.	4.0	39
116	Hierarchically Interconnected Ni ₃ S ₂ Nanofibers as Binder-Free Electrodes for High-Performance Sodium-Ion Energy-Storage Devices. ACS Applied Nano Materials, 2019, 2, 2634-2641.	2.4	39
117	Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light: Science and Applications, 2021, 10, 113.	7.7	39
118	Recent Advances in Two-Dimensional Quantum Dots and Their Applications. Nanomaterials, 2021, 11, 1549.	1.9	39
119	Low temperature synthesis of copper telluride nanostructures: phase formation, growth, and electrical transport properties. Journal of Materials Chemistry, 2012, 22, 7098.	6.7	36
120	Thermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticles. Nano Energy, 2018, 51, 563-570.	8.2	36
121	Highly stable Pd/HNb ₃ O ₈ -based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horizons, 2021, 6, 260-270.	4.1	36
122	Synthesis and characterization of metallic TaSi2 nanowires. Applied Physics Letters, 2005, 87, 223113.	1.5	35
123	Enhanced Photocarrier Generation with Selectable Wavelengths by Mâ€Decorated ulnS ₂ Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS ₂ Bilayers. Small, 2019, 15, e1803529.	5.2	35
124	Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications. Nanoscale, 2014, 6, 13861-13869.	2.8	34
125	Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification. Scientific Reports, 2014, 4, 4402.	1.6	34
126	Three-Dimensional Interconnected Reticular Porous Carbon From Corn Starch By a Sample Sol–Gel Method Toward High-Performance Supercapacitors With Aqueous and Ionic Liquid Electrolytes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18690-18699.	3.2	34

#	Article	IF	CITATIONS
127	Ni–Mo–S@Ni–P composite materials as binder-free electrodes for aqueous asymmetric supercapacitors with enhanced performance. Journal of Power Sources, 2020, 477, 229022.	4.0	34
128	Direct Observation of Field Emission in a Single TaSi2Nanowire. Nano Letters, 2007, 7, 2243-2247.	4.5	33
129	High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements. Journal of Materials Chemistry, 2012, 22, 10704.	6.7	33
130	Facile synthesis and characterization of high temperature phase FeS2 pyrite nanocrystals. Materials Letters, 2012, 75, 152-154.	1.3	33
131	Highly sensitive, selective and stable NO ₂ gas sensors with a ppb-level detection limit on 2D-platinum diselenide films. Journal of Materials Chemistry C, 2020, 8, 4851-4858.	2.7	33
132	InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity. ACS Applied Materials & Interfaces, 2016, 8, 26105-26111.	4.0	32
133	Phaseâ€Engineered Typeâ€II Multimetal–Selenide Heterostructures toward Lowâ€Power Consumption, Flexible, Transparent, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1704052.	5.2	32
134	Coffee grounds-derived carbon as high performance anode materials for energy storage applications. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 178-188.	2.7	32
135	Wet and Dry Adhesion Properties of Selfâ€Selective Nanowire Connectors. Advanced Functional Materials, 2009, 19, 3098-3102.	7.8	31
136	Solution-based silk fibroin dielectric in n-type C60 organic field-effect transistors: Mobility enhancement by the pentacene interlayer. Applied Physics Letters, 2013, 103, .	1.5	31
137	Fabrication of a Highly Stable White Light-Emitting Diode With Multiple-Layer Colloidal Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-9.	1.9	31
138	Resistive switching of Sn-doped In ₂ O ₃ /HfO ₂ core–shell nanowire: geometry architecture engineering for nonvolatile memory. Nanoscale, 2017, 9, 6920-6928.	2.8	31
139	Characteristics of constrained ferroelectricity in PbZrO3â^•BaZrO3 superlattice films. Journal of Applied Physics, 2005, 97, 034105.	1.1	30
140	High performance Cu_2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique. Optical Materials Express, 2014, 4, 1473.	1.6	30
141	Toward high efficiency and panel size 30×40 cm 2 Cu(In,Ga)Se 2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature. Nano Energy, 2014, 10, 28-36.	8.2	30
142	Toward Omnidirectional Light Absorption by Plasmonic Effect for High-Efficiency Flexible Nonvacuum Cu(In,Ga)Se ₂ Thin Film Solar Cells. ACS Nano, 2014, 8, 9341-9348.	7.3	30
143	Low Vacuum Annealing of Cellulose Acetate on Nickel Towards Transparent Conductive CNT–Graphene Hybrid Films. ACS Applied Materials & Interfaces, 2014, 6, 9071-9077.	4.0	30
144	The role of water in the device performance of n-type PTCDI-C8 organic field-effect transistors with solution-based gelatin dielectric. Organic Electronics, 2014, 15, 920-925.	1.4	30

#	Article	IF	CITATIONS
145	Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy. Journal of Catalysis, 2015, 329, 167-176.	3.1	30
146	Thermoresponsive Chemical Connectors Based on Hybrid Nanowire Forests. Angewandte Chemie - International Edition, 2010, 49, 616-619.	7.2	29
147	Taper PbZr _{0.2} Ti _{0.8} O ₃ Nanowire Arrays: From Controlled Growth by Pulsed Laser Deposition to Piezopotential Measurements. ACS Nano, 2012, 6, 2826-2832.	7.3	29
148	Phase-engineered SnSex toward SnSe2/SnSe heterostructure with improved thermal conductance by a low-temperature plasma-assisted chemical vapor reaction. Nano Energy, 2018, 44, 419-429.	8.2	29
149	Platinum-Free Ternary Metallic Selenides as Nanostructured Counter Electrode for High-Efficiency Dye-Sensitized Solar Cell by Interface Engineering. ACS Applied Energy Materials, 2020, 3, 3704-3713.	2.5	29
150	Hybrid core-multishell nanowire forests for electrical connector applications. Applied Physics Letters, 2009, 94, 263110.	1.5	28
151	Ultrathin-Body High-Mobility InAsSb-on-Insulator Field-Effect Transistors. IEEE Electron Device Letters, 2012, 33, 504-506.	2.2	28
152	Non-antireflective Scheme for Efficiency Enhancement of Cu(In,Ga)Se ₂ Nanotip Array Solar Cells. ACS Nano, 2013, 7, 7318-7329.	7.3	28
153	Hydrated bovine serum albumin as the gate dielectric material for organic field-effect transistors. Organic Electronics, 2013, 14, 2645-2651.	1.4	27
154	Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale, 2014, 6, 7332-7338.	2.8	27
155	Selective n-type doping in graphene via the aluminium nanoparticle decoration approach. Journal of Materials Chemistry C, 2014, 2, 5417-5421.	2.7	27
156	Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe ₂ . 2D Materials, 2021, 8, 031003.	2.0	27
157	Enhanced mobility of organic thin film transistors by water absorption of collagen hydrolysate gate dielectric. Applied Physics Letters, 2013, 103, 023303.	1.5	26
158	Flexible high performance hybrid AZO/Ag-nanowire/AZO sandwich structured transparent conductors for flexible Cu(In,Ga)Se2 solar cell applications. Journal of Materials Chemistry A, 2016, 4, 6980-6988.	5.2	26
159	Few-Layer Graphene Sheet-Passivated Porous Silicon Toward Excellent Electrochemical Double-Layer Supercapacitor Electrode. Nanoscale Research Letters, 2018, 13, 242.	3.1	26
160	Crystallinity improvement of ZnO thin film by hierarchical thermal annealing. Optical Materials Express, 2013, 3, 295.	1.6	25
161	Vacuum-Induced Wrinkle Arrays of InGaAs Semiconductor Nanomembranes on Polydimethylsiloxane Microwell Arrays. ACS Nano, 2014, 8, 3080-3087.	7.3	25
162	Desalination of saline water by nanochannel arrays through manipulation of electrical double layer. Nano Energy, 2015, 12, 394-400.	8.2	25

#	Article	IF	CITATIONS
163	Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices. Nanoscale, 2015, 7, 1678-1687.	2.8	25
164	Tunable nitrogen-doped graphene sheets produced with in situ electrochemical cathodic plasma at room temperature for lithium-ion batteries. Materials Today Energy, 2019, 12, 336-347.	2.5	25
165	Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling high-performance phototransistors. Photonics Research, 2019, 7, 311.	3.4	25
166	Growth and characterization of Cu(In,Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition. Nanoscale Research Letters, 2014, 9, 280.	3.1	24
167	Enhancing Quantum Yield in Strained MoS ₂ Bilayers by Morphology-Controlled Plasmonic Nanostructures toward Superior Photodetectors. Chemistry of Materials, 2020, 32, 2242-2252.	3.2	24
168	Intercalation of Zinc Monochloride Cations by Deep Eutectic Solvents for High-Performance Rechargeable Non-aqueous Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 7814-7825.	4.0	24
169	Synthesis of blue-light-emitting Si1â^'xGex oxide nanowires. Applied Physics Letters, 2005, 86, 263109.	1.5	23
170	Synthesis and characterization of self-catalyzed CuO nanorods on Cuâ^•TaNâ^•Si assembly using vacuum-arc Cu deposition and vapor-solid reaction. Journal of Vacuum Science & Technology B, 2006, 24, 139.	1.3	23
171	Nanoscale Structural Engineering via Phase Segregation: Auâ^Ge System. Nano Letters, 2010, 10, 393-397.	4.5	23
172	Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator. Applied Physics Letters, 2011, 98, 012111.	1.5	23
173	Sn-doped In2O3 nanowires: enhancement of electrical field emission by a selective area growth. Nanoscale Research Letters, 2012, 7, 684.	3.1	23
174	Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy. Optical Materials Express, 2013, 3, 237.	1.6	23
175	Vastly improved solar-light induced water splitting catalyzed by few-layer MoS2 on Au nanoparticles utilizing localized surface plasmon resonance. Nano Energy, 2020, 77, 105267.	8.2	23
176	Low Resistivity Metal Silicide Nanowires with Extraordinarily High Aspect Ratio for Future Nanoelectronic Devices. ACS Nano, 2011, 5, 9202-9207.	7.3	22
177	Improved Efficiency of a Large-Area Cu(In,Ga)Se ₂ Solar Cell by a Nontoxic Hydrogen-Assisted Solid Se Vapor Selenization Process. ACS Applied Materials & Interfaces, 2014, 6, 4842-4849.	4.0	22
178	Thermoplasmonics-assisted nanoheterostructured Au-decorated CuInS2 nanoparticles: Matching solar spectrum absorption and its application on selective distillation of non-polar solvent systems by thermal solar energy. Nano Energy, 2015, 15, 470-478.	8.2	22
179	The Essential Role of Cu Vapor for the Self-Limit Graphene via the Cu Catalytic CVD Method. Journal of Physical Chemistry C, 2015, 119, 6835-6842.	1.5	22
180	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. Chemistry of Materials, 2016, 28, 1147-1154.	3.2	22

#	Article	IF	CITATIONS
181	Rutile-phase TiO2@carbon core-shell nanowires and their photoactivation in visible light region. Carbon, 2021, 181, 280-289.	5.4	22
182	Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na–S batteries. Nano Energy, 2021, 90, 106590.	8.2	22
183	Hierarchically Hybrid Porous Co ₃ O ₄ @NiMoO ₄ /CoMoO ₄ Heterostructures for High-Performance Electrochemical Energy Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 8282-8296.	4.0	22
184	High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition. Journal of Applied Physics, 2012, 111, 123112.	1.1	21
185	Single-Step Formation of ZnO/ZnWO _{<i>x</i>} Bilayer Structure via Interfacial Engineering for High Performance and Low Energy Consumption Resistive Memory with Controllable High Resistance States. ACS Applied Materials & Interfaces, 2013, 5, 7831-7837.	4.0	21
186	Low-Temperature Chemical Synthesis of Three-Dimensional Hierarchical Ni(OH) ₂ -Coated Ni Microflowers for High-Performance Enzyme-Free Glucose Sensor. Journal of Physical Chemistry C, 2016, 120, 25752-25759.	1.5	21
187	Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition. Scientific Reports, 2016, 6, 19102.	1.6	21
188	Tunable defect engineering in TiON thin films by multi-step sputtering processes: from a Schottky diode to resistive switching memory. Journal of Materials Chemistry C, 2017, 5, 6319-6327.	2.7	21
189	Improved Long-Term Reliability of a Silica-Encapsulated Perovskite Quantum-Dot Light-Emitting Device with an Optically Pumped Remote Film Package. ACS Omega, 2021, 6, 2836-2845.	1.6	21
190	Synthesis of Si nanopyramids at SiOxâ^•Si interface for enhancing electroluminescence of Si-rich SiOx. Applied Physics Letters, 2006, 89, 093126.	1.5	20
191	High Performance and Low power Monolithic Three-Dimensional Sub-50 nm Poly Si Thin film transistor (TFTs) Circuits. Scientific Reports, 2017, 7, 1368.	1.6	20
192	Bioinspired networks consisting of spongy carbon wrapped by graphene sheath for flexible transparent supercapacitors. Communications Chemistry, 2019, 2, .	2.0	20
193	Mechanically controllable nonlinear dielectrics. Science Advances, 2020, 6, eaaz3180.	4.7	20
194	Recovery of Valuable Materials from the Waste Crystalline-Silicon Photovoltaic Cell and Ribbon. Processes, 2021, 9, 712.	1.3	20
195	Synthesis of single crystal Sn-doped In2O3 nanowires: size-dependent conductive characteristics. Physical Chemistry Chemical Physics, 2012, 14, 13041.	1.3	19
196	Direct Synthesis of Graphene with Tunable Work Function on Insulators via In Situ Boron Doping by Nickel-Assisted Growth. Journal of Physical Chemistry C, 2014, 118, 25089-25096.	1.5	19
197	Amorphous zinc-doped silicon oxide (SZO) resistive switching memory: manipulated bias control from selector to memristor. Journal of Materials Chemistry C, 2014, 2, 4401-4405.	2.7	19
198	Photoluminescence Characteristics of Multilayer HfSe ₂ Synthesized on Sapphire Using Ion Implantation. Advanced Materials Interfaces, 2018, 5, 1701619.	1.9	19

#	Article	IF	CITATIONS
199	Hybridizing Strong Quadrupole Gap Plasmons Using Optimized Nanoantennas with Bilayer MoS ₂ for Excellent Photoâ€Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801184.	10.2	19
200	Rearâ€Passivated Ultrathin Cu(In,Ga)Se ₂ Films by Al ₂ O ₃ Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency. Advanced Functional Materials, 2019, 29, 1905040.	7.8	19
201	A hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheet system as a superior oxygen electrocatalyst for rechargeable Zn–air batteries. Nanoscale, 2020, 12, 19644-19654.	2.8	19
202	An Ultrasensitive Gateless Photodetector Based on the 2D Bilayer MoS ₂ –1D Si Nanowire–0D Ag Nanoparticle Hybrid Structure. ACS Applied Materials & Interfaces, 2021, 13, 4126-4132.	4.0	19
203	Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SiXGe1-XSubstrate. Journal of Physical Chemistry B, 2005, 109, 21831-21835.	1.2	18
204	Polarity of Bipolar Resistive Switching Characteristics in ZnO Memory Films. Journal of the Electrochemical Society, 2011, 158, H872.	1.3	18
205	Tunable Multilevel Storage of Complementary Resistive Switching on Single-Step Formation of ZnO/ZnWO _{<i>x</i>} Bilayer Structure via Interfacial Engineering. ACS Applied Materials & Interfaces, 2014, 6, 17686-17693.	4.0	18
206	Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting. Scientific Reports, 2017, 7, 12706.	1.6	18
207	In-situ synthesis of hybrid nickel cobalt sulfide/carbon nitrogen nanosheet composites as highly efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Electrochimica Acta, 2020, 362, 136968.	2.6	18
208	Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance. Chemistry of Materials, 2021, 33, 3490-3498.	3.2	18
209	Coaxial Metal-Silicide Ni ₂ Si/C54-TiSi ₂ Nanowires. Nano Letters, 2012, 12, 2254-2259.	4.5	17
210	Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors. Physical Chemistry Chemical Physics, 2013, 15, 2654.	1.3	17
211	Materials and interfaces issues in pentacene/PTCDI-C8 ambipolar organic field-effect transistors with solution-based gelatin dielectric. Organic Electronics, 2014, 15, 2400-2407.	1.4	17
212	Conformal graphene coating on high-aspect ratio Si nanorod arrays by a vapor assisted method for field emitter. RSC Advances, 2014, 4, 27106.	1.7	17
213	Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas–solid transformation and their applications as supercapacitor electrodes for p-doping of graphene transistors. Nanoscale, 2015, 7, 7535-7539.	2.8	17
214	Selection Role of Metal Oxides into Transition Metal Dichalcogenide Monolayers by a Direct Selenization Process. ACS Applied Materials & Interfaces, 2018, 10, 9645-9652.	4.0	17
215	Deep Eutectic Solventâ€Assisted Synthesis of Ternary Heterojunctions for the Oxygen Evolution Reaction and Photocatalysis. ChemSusChem, 2020, 13, 2726-2738.	3.6	17
216	Rational Design on Wrinkleâ€Less Transfer of Transition Metal Dichalcogenide Monolayer by Adjustable Wettabilityâ€Assisted Transfer Method. Advanced Functional Materials, 2021, 31, 2104978.	7.8	17

#	Article	IF	CITATIONS
217	Zeolitic Imidazolate Framework-Derived Copper Single Atom Anchored on Nitrogen-Doped Porous Carbon as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction toward Zn–Air Battery. Chemistry of Materials, 2022, 34, 4104-4114.	3.2	17
218	Ultrafast carrier dynamics in Cu(In,Ga)Se_2 thin films probed by femtosecond pump-probe spectroscopy. Optics Express, 2012, 20, 12675.	1.7	16
219	Phase-pure iron pyrite nanocrystals for low-cost photodetectors. Nanoscale Research Letters, 2014, 9, 549.	3.1	16
220	Efficient Doping and Energy Transfer from ZnO to Eu ³⁺ lons in Eu ³⁺ -Doped ZnO Nanocrystals. Journal of Nanoscience and Nanotechnology, 2012, 12, 2417-2423.	0.9	15
221	Large scale two-dimensional nanobowl array high efficiency polymer solar cell. RSC Advances, 2012, 2, 1314.	1.7	15
222	Fabrication of large-scale single-crystal bismuth telluride (Bi ₂ Te ₃) nanosheet arrays by a single-step electrolysis process. Nanoscale, 2014, 6, 7780-7785.	2.8	15
223	Three-Dimensional CuO/TiO2 Hybrid Nanorod Arrays Prepared by Electrodeposition in AAO Membranes as an Excellent Fenton-Like Photocatalyst for Dye Degradation. Nanoscale Research Letters, 2020, 15, 45.	3.1	15
224	Regulating interlayer spacing with pillarÂand strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ionÂstorage. Materials Today Energy, 2021, 22, 100832.	2.5	15
225	All-inorganic CsPbBr3 perovskite solar cells with enhanced efficiency by exploiting lone pair electrons via passivation of crystal boundary using carbon nitride (g-C3N4) nanosheets. Materials Today Energy, 2021, 21, 100782.	2.5	15
226	<i>In situ</i> synthesis of Fe ₂ O ₃ nanosphere/Co ₃ O ₄ nanowire-connected reduced graphene oxide hybrid networks for high-performance supercapacitors. Nanoscale, 2021, 13, 15431-15444.	2.8	15
227	Formation and evolution of self-assembled crystalline Si nanorings on (001) Si mediated by Au nanodots. Applied Physics Letters, 2005, 87, 223102.	1.5	14
228	Large-Scale Micro- and Nanopatterns of Cu(In,Ga)Se ₂ Thin Film Solar Cells by Mold-Assisted Chemical-Etching Process. ACS Nano, 2015, 9, 3907-3916.	7.3	14
229	3D CoMoSe4 Nanosheet Arrays Converted Directly from Hydrothermally Processed CoMoO4 Nanosheet Arrays by Plasma-Assisted Selenization Process Toward Excellent Anode Material in Sodium-Ion Battery. Nanoscale Research Letters, 2019, 14, 213.	3.1	14
230	Atomically Thin Tin Monoxide-Based p-Channel Thin-Film Transistor and a Low-Power Complementary Inverter. ACS Applied Materials & Interfaces, 2021, , .	4.0	14
231	Doped spiral alumina nanowires. Chemical Communications, 2005, , 204.	2.2	13
232	One-dimensional germanium nanostructures—formation and their electron field emission properties. Nanotechnology, 2010, 21, 455601.	1.3	13
233	30×40 cm2 flexible Cu(In,Ga)Se2 solar panel by low temperature plasma enhanced selenization process. Nano Energy, 2016, 24, 45-55.	8.2	13
234	Electrochemically active novel amorphous carbon (a-C)/Cu3P peapod nanowires by low-temperature chemical vapor phosphorization reaction as high efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 318, 374-383.	2.6	13

#	Article	IF	CITATIONS
235	Design of novel TiO ₂ –SiO ₂ core–shell helical nanostructured anti-reflective coatings on Cu(In,Ga)Se ₂ solar cells with enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 11452-11459.	5.2	13
236	Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals. Nanoscale Research Letters, 2013, 8, 329.	3.1	12
237	Self-assembly and secondary nucleation in ZnO nanostructures derived from a lipophilic precursor. CrystEngComm, 2014, 16, 6003-6009.	1.3	12
238	Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. Nano Letters, 2016, 16, 2463-2470.	4.5	12
239	Functionalized hybrid perovskite nanocrystals with organic ligands showing a stable 3D/2D core/shell structure for display and laser applications. Journal of Materials Chemistry C, 2021, 9, 17341-17348.	2.7	12
240	Synthesis and Formation Mechanism of Gallium Nitride Nanotubular Structure. Electrochemical and Solid-State Letters, 2005, 8, G153.	2.2	11
241	Electron holography for improved measurement of microfields in nanoelectrode assemblies. Applied Physics Letters, 2006, 89, 023112.	1.5	11
242	Enhanced solar performance of chemical bath deposited-Zn(O,S)/Cu(In,Ga)Se ₂ solar cells via interface engineering by a wet soaking process. Journal of Materials Chemistry A, 2015, 3, 14985-14990.	5.2	11
243	Ultrafast Graphene Growth on Insulators via Metal-Catalyzed Crystallization by a Laser Irradiation Process: From Laser Selection, Thickness Control to Direct Patterned Graphene Utilizing Controlled Layer Segregation Process. Small, 2015, 11, 3017-3027.	5.2	11
244	Interconnect and contact for nanoelectronics: Metallic TaSi2 nanowires. Thin Solid Films, 2007, 515, 8109-8112.	0.8	10
245	Large-scale nanotwins in Cu films/Cu nanowires via stress engineering by a high-energy ion beam bombardment process: growth and characterization. Journal of Materials Chemistry C, 2014, 2, 9805-9812.	2.7	10
246	Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron–nitrogen by a non-contact approach. Nanoscale, 2014, 6, 8635.	2.8	10
247	Bias Polarityâ€Induced Transformation of Point Contact Resistive Switching Memory from Single Transparent Conductive Metal Oxide Layer. Advanced Electronic Materials, 2015, 1, 1500061.	2.6	10
248	Heading towards novel superior silicon-based lithium-ion batteries: ultrasmall nanoclusters top-down dispersed over synthetic graphite flakes as binary hybrid anodes. Journal of Materials Chemistry A, 2015, 3, 16998-17007.	5.2	10
249	Roles of oxygen and nitrogen in control of nonlinear resistive behaviors via filamentary and homogeneous switching in an oxynitride thin film memristor. RSC Advances, 2016, 6, 61221-61227.	1.7	10
250	MoS <inf>2</inf> U-shape MOSFET with 10 nm channel length and poly-Si source/drain serving as seed for full wafer CVD MoS <inf>2</inf> availability. , 2016, , .		10
251	Gate-Tunable and Programmable n-InGaAs/Black Phosphorus Heterojunction Diodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 23382-23391.	4.0	10
252	Design of suppressing optical and recombination losses in ultrathin CuInGaSe2 solar cells by Voronoi nanocavity arrays. Nano Energy, 2020, 78, 105225.	8.2	10

#	Article	IF	CITATIONS
253	Transparent Flexible Heteroepitaxy of NiO Coated AZO Nanorods Arrays on Muscovites for Enhanced Energy Storage Application. Small, 2020, 16, 2000020.	5.2	10
254	Hierarchical Mn-doped Fe2O3@rGO hollow core-shell spheres for high-performance hybrid capacitor. Materials Today Energy, 2020, 17, 100388.	2.5	10
255	Chemical welding of diamine molecules in graphene oxide nanosheets: Design of precisely controlled interlayer spacings with the fast Li+ diffusion coefficient toward high-performance storage application. Electrochimica Acta, 2021, 380, 138114.	2.6	10
256	Optimum resistive switching characteristics of NiFe2O4 by controlling film thickness. Applied Surface Science, 2021, 564, 150091.	3.1	10
257	Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111)Si. Journal of Applied Physics, 2003, 93, 1468-1471.	1.1	9
258	Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample. Optics Express, 2011, 19, 18893.	1.7	9
259	Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment. Journal of Applied Physics, 2012, 112, 124102.	1.1	9
260	In situ doping control and electrical transport investigation of single and arrayed CdS nanopillars. Nanoscale, 2013, 5, 7213.	2.8	9
261	Crystalline Engineering Toward Large-Scale High-Efficiency Printable Cu(In,Ga)Se ₂ Thin Film Solar Cells on Flexible Substrate by Femtosecond Laser Annealing Process. ACS Applied Materials & Interfaces, 2017, 9, 14006-14012.	4.0	9
262	Vertical Al2Se3/MoSe2 heterojunction on sapphire synthesized using ion beam. RSC Advances, 2017, 7, 10154-10157.	1.7	9
263	Effects of N ₂ O surface treatment on the electrical properties of the InAlN/GaN high electron mobility transistors. Journal Physics D: Applied Physics, 2020, 53, 065103.	1.3	9
264	Influence of gamma-ray irradiation and post-annealing studies on pentacene films: the anisotropic effects on structural and electronic properties. RSC Advances, 2020, 10, 21092-21099.	1.7	9
265	Mechanical and magnetic properties of Ni-doped metallic TaSi2nanowires. Nanotechnology, 2007, 18, 145604.	1.3	8
266	Fabrication of large-scale single-crystal Cu(In,Ga)Se2 nanotip arrays solar cell by one-step ion milling processes. Thin Solid Films, 2013, 546, 347-352.	0.8	8
267	A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se ₂ thin-film solar cells on arbitrary substrates. Nanoscale, 2016, 8, 5181-5188.	2.8	8
268	Enhanced wavelength-selective photoresponsivity with a MoS ₂ bilayer grown conformally on a patterned sapphire substrate. Journal of Materials Chemistry C, 2019, 7, 1622-1629.	2.7	8
269	Shape-controlled single-crystal growth of InP at low temperatures down to 220 ŰC. Proceedings of the United States of America, 2020, 117, 902-906.	3.3	8
270	Rational Design on Chemical Regulation of Interfacial Microstress Engineering by Matching Young's Modulus in a CsPbBr ₃ Perovskite Film with Mechanical Compatibility toward Enhanced Photoelectric Conversion Efficiency. ACS Applied Materials & Interfaces, 2022, 14, 20257-20267.	4.0	8

#	Article	IF	CITATIONS
271	Formation of SiCH6-mediated Ge quantum dots with strong field emission properties by ultrahigh vacuum chemical vapor deposition. Journal of Applied Physics, 2005, 98, 073506.	1.1	7
272	Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain. Nanoscale, 2013, 5, 6219.	2.8	7
273	Spectroscopic investigation of gamma radiation-induced coloration in silicate glass for nuclear applications. Journal of Nuclear Materials, 2014, 453, 233-238.	1.3	7
274	Natural polyelectrolyte: Major ampullate spider silk for electrolyte organic field-effect transistors. Organic Electronics, 2014, 15, 954-960.	1.4	7
275	In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy. Scientific Reports, 2015, 5, 18354.	1.6	7
276	Enhanced Oral NO Delivery through Bioinorganic Engineering of Acid-Sensitive Prodrug into a Transformer-like DNIC@MOF Microrod. ACS Applied Materials & Interfaces, 2022, 14, 3849-3863.	4.0	7
277	Growing carbon nanotube nanojunctions on an aluminum substrate. Journal of Crystal Growth, 2006, 291, 218-224.	0.7	6
278	Photoluminescence of Plasma Enhanced Chemical Vapor Deposition Amorphous Silicon Oxide with Silicon Nanocrystals Grown at Different Fluence Ratios and Substrate Temperatures. Japanese Journal of Applied Physics, 2006, 45, 1040-1043.	0.8	6
279	Kinetic Growth of Self-Formed In2O3 Nanodots via Phase Segregation: Ni/InAs System. ACS Nano, 2011, 5, 6637-6642.	7.3	6
280	Plan-view transmission electron microscopy study on coalescence overgrowth of GaN nano-columns by MOCVD. Optical Materials Express, 2013, 3, 1459.	1.6	6
281	High-Density Germanium Nanowire Arrays via Supercritical Fluid-Liquid-Solid Growth in Porous Alumina Templates. ECS Solid State Letters, 2013, 2, P55-P57.	1.4	6
282	Large Scale and Orientation-Controllable Nanotip Structures on CuInS ₂ , Cu(In,Ga)S ₂ , CuInSe ₂ , and Cu(In,Ga)Se ₂ by Low Energy Ion Beam Bombardment Process: Growth and Characterization. ACS Applied Materials & Interfaces, 2014, 6, 8327-8336.	4.0	6
283	Quantum Dots: Perovskite Quantum Dots with Near Unity Solution and Neatâ€Film Photoluminescent Quantum Yield by Novel Spray Synthesis (Adv. Mater. 7/2018). Advanced Materials, 2018, 30, 1870048.	11.1	6
284	Direct Synthesis of Large-Scale Multilayer TaSe2 on SiO2/Si Using Ion Beam Technology. ACS Omega, 2019, 4, 17536-17541.	1.6	6
285	Non-layered Ti ₂ N synthesized by plasma process for the anodes of lithium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 172-175.	3.0	6
286	Tunable valleytronics with symmetry-retaining high polarization degree in SnSxSe1â^'x model system. Applied Physics Letters, 2020, 116, 061105.	1.5	6
287	Glancing angle deposition of large-scale helical Si@Cu ₃ Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries. Nanoscale, 2021, 13, 18626-18631.	2.8	6
288	Consequences of gamma-ray irradiation on structural and electronic properties of PEDOT:PSS polymer in air and vacuum environments. RSC Advances, 2021, 11, 20752-20759.	1.7	6

#	Article	IF	CITATIONS
289	Synthesis of Silicon Nanocrystals in Silicon-Rich SiO[sub 2] by Rapid CO[sub 2] Laser Annealing. Electrochemical and Solid-State Letters, 2005, 8, D43.	2.2	5
290	ZnO nanoparticle-decorated HfO ₂ /Sn-doped In ₂ O ₃ core–shell nanowires by atomic layer deposition: enhancement of field emission behavior by surface modification engineering. Journal of Materials Chemistry C, 2014, 2, 5335-5341.	2.7	5
291	Selfâ€Assembled Epitaxial Core–Shell Nanocrystals with Tunable Magnetic Anisotropy. Small, 2015, 11, 4117-4122.	5.2	5
292	Dynamic pH Sensor with Embedded Calibration Scheme by Advanced CMOS FinFET Technology. Sensors, 2019, 19, 1585.	2.1	5
293	Enhanced Power Conversion Efficiency in Solutionâ€Processed Rigid CuIn(S,Se) 2 and Flexible Cu(In,Ga)Se 2 Solar Cells Utilizing Plasmonic Auâ€5iO 2 Coreâ€5hell Nanoparticles. Solar Rrl, 2019, 3, 1800343.	3.1	5
294	Interface Engineered Binary Platinum Free Alloy-based Counter Electrodes with Improved Performance in Dye-Sensitized Solar Cells. Scientific Reports, 2020, 10, 9157.	1.6	5
295	The growth of nano-scale diamond tips on diamond/Si. Journal of Crystal Growth, 2005, 283, 367-372.	0.7	4
296	Microphotoluminescence and Microphotoreflectance Analyses of\$hboxCO_2\$Laser Rapid-Thermal-Annealed\$hboxSiO_x\$Surface With Buried Si Nanocrystals. IEEE Nanotechnology Magazine, 2006, 5, 511-516.	1.1	4
297	Monolayer doping and diameter-dependent electron mobility assessment of nanowires. , 2009, , .		4
298	Fabrication of vertically aligned CuInSe2 nanorod arrays by template-assisted mechanical approach. Materials Chemistry and Physics, 2013, 138, 5-10.	2.0	4
299	Geometric Design of Confined Conducting Filaments in Resistive Random Access Memory by Al ₂ O ₃ Nanodome-Shaped Arrays (NDSAs) via Glancing-Angle Deposition Technology Toward Neuromorphic Computing. , 2021, 3, 1757-1766.		4
300	Design of Co Nanoparticlesâ€Encapsulated by Boron and Nitrogen Coâ€Doped Carbon Nanosheets as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 0, , 2101454.	1.9	4
301	Growth of strained Si on high-quality relaxed Si1â^'xGex with an intermediate Si1â^'yCy layer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1141-1145.	0.9	3
302	Highâ€performance solutionâ€processed amorphous ZrInZnO thinâ€film transistors. Physica Status Solidi - Rapid Research Letters, 2012, 6, 400-402.	1.2	3
303	Electrocatalysis: Wafer Scale Phase-Engineered 1T- and 2H-MoSe2 /Mo Core-Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9658-9658.	11.1	3
304	Enhanced Conversion Efficiency of Cu(In,Ga)Se ₂ Solar Cells via Electrochemical Passivation Treatment. ACS Applied Materials & Interfaces, 2016, 8, 7777-7782.	4.0	3
305	Energy Storage: Hollow NiCo2 S4 Nanospheres Hybridized with 3D Hierarchical Porous rGO/Fe2 O3 Composites toward High-Performance Energy Storage Device (Adv. Energy Mater. 16/2018). Advanced Energy Materials, 2018, 8, 1870076.	10.2	3
306	Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application. ACS Applied Materials & Interfaces, 2021, 13, 55470-55480.	4.0	3

#	Article	IF	CITATIONS
307	Anomalous electrical performance of nanoscaled interfacial oxides for bonded n-GaAs wafers. Applied Physics Letters, 2006, 88, 112112.	1.5	2
308	Improved Performance of ZnO-Based Resistive Memory by Internal Diffusion of Ag Atoms. Journal of Nanoscience and Nanotechnology, 2012, 12, 6271-6275.	0.9	2
309	Self-organized antireflection Culn(S,Se)2 nano-protrusions on flexible substrates by ion erosion based on CulnS2 nanocrystal precursor inks. Applied Surface Science, 2015, 354, 36-41.	3.1	2
310	Quadrupole Gap Plasmons: Hybridizing Strong Quadrupole Gap Plasmons Using Optimized Nanoantennas with Bilayer MoS ₂ for Excellent Photoâ€Electrochemical Hydrogen Evolution (Adv. Energy Mater. 29/2018). Advanced Energy Materials, 2018, 8, 1870127.	10.2	2
311	The Photothermal Stability Study of Quantum Dots Embedded in Sodium Chlorides. Crystals, 2020, 10, 2.	1.0	2
312	Smart Design of Resistive Switching Memory by an In Situ Currentâ€Induced Oxidization Process on a Single Crystalline Metallic Nanowire. Advanced Electronic Materials, 2021, 7, 2000252.	2.6	2
313	In Situ Current-Accelerated Phase Cycling with Metallic and Semiconducting Switching in Copper Nanobelts at Room Temperature. ACS Nano, 2021, 15, 4789-4801.	7.3	2
314	Fabrication of Large-Scale High-Mobility Flexible Transparent Zinc Oxide Single Crystal Wafers. ACS Applied Materials & Interfaces, 2021, 13, 18991-18998.	4.0	2
315	Electrochemical Reduction of CO ₂ to Formate on Glacial Acetic Acid-Refluxed Pd Nanoclusters. Journal of the Electrochemical Society, 2020, 167, 126507.	1.3	2
316	Production of Aligned Carbon Nanotube Films and Nitrogen Doped Carbon Nanotube Films from the Pyrolysis of Styrene. AlP Conference Proceedings, 2004, , .	0.3	1
317	CO2 laser annealing synthesis of silicon nanocrystals buried in Si-rich SiO2. Materials Research Society Symposia Proceedings, 2005, 862, 1921.	0.1	1
318	Localized CO ₂ Laser Annealing Induced Dehydrogenation/Ablation and Optical Refinement of Silicon-Rich Silicon Dioxide Film with Embedded Si Nanocrystals. Journal of Nanoscience and Nanotechnology, 2006, 6, 3710-3717.	0.9	1
319	Large Scale Single-Crystal Cu(In,Ga)Se2 Nanotip Arrays for High Efficiency Solar Cell. ECS Transactions, 2013, 50, 33-39.	0.3	1
320	<pre><mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mtext>Ta</mml:mtext></mml:mrow><mml:mtext>2<mml:msub><mml:mrow><mml:mtext>Ta</mml:mtext></mml:mrow><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:msub><mml:mtext>2<mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:mtext></mml:msub></mml:math></pre>	ıl:mtext> < 1.5 nl:mtext> <	1
321	Journal of Nanomaterials, 2014, 2014, 1-8. Nonlinear bidirectional selector without rare materials for stackable cross-bar bipolar memory applications. Japanese Journal of Applied Physics, 2014, 53, 08LE03.	0.8	1
322	Solar energy harvesting scheme utilizing three-dimensional hierarchical nanostructures. , 2014, , .		1
323	Electrical charge-induced selective ion permeation in HfO2/porous nickel silicide hierarchical structures. RSC Advances, 2015, 5, 47294-47299.	1.7	1
324	Catalyst-dependent morphological evolution by interfacial stress in crystalline–amorphous core–shell germanium nanowires. RSC Advances, 2015, 5, 28454-28459.	1.7	1

#	Article	IF	CITATIONS
325	Tunable complex magnetic states of epitaxial core-shell metal oxide nanocrystals fabricated by the phase decomposition method. Journal Physics D: Applied Physics, 2016, 49, 275001.	1.3	1
326	High Resolution Ion Detector (HRID) by 16nm FinFET CMOS Technology. , 2018, , .		1
327	Nanoprobing of MoS2 by Synchrotron Radiation When van der Waals Epitaxy Is Locally Invalid. ACS Applied Materials & Interfaces, 2020, 12, 32041-32053.	4.0	1
328	Improved On/Off Current Ratio and Linearity of InAlN/GaN HEMTs with N2O Surface Treatment for Radio Frequency Application. ECS Journal of Solid State Science and Technology, 2021, 10, 065013.	0.9	1
329	Femtosecond Laser Crystallization for Boosting the Conversion Efficiency of Flexible Ink-Printing Cu(In,Ga)Se2 Thin Film Solar Cells. , 2017, , .		1
330	Seeing pressure in color based on integration of highly sensitive pressure sensor and emission tunable light emitting diode. Optics Express, 2019, 27, 35448.	1.7	1
331	Multifunctional Ion‧ensitive Floating Gate Fin Fieldâ€Effect Transistor with Threeâ€Dimensional Nanoseaweed Structure by Glancing Angle Deposition Technology. Small, 2022, 18, e2104168.	5.2	1
332	INTERFACIAL STRUCTURES OF Si3N4 on Si (100) & Si (111). International Journal of Modern Physics B, 2002, 16, 4493-4496.	1.0	0
333	Improved near-infrared luminescence of Si-rich SiO 2 with buried Si nanocrystals grown by PECVD at optimized N 2 O fluence. , 2005, 5713, 592.		0
334	Analysis of silicon nanocrystals in silicon-rich SiO 2 synthesized by CO 2 laser annealing. , 2005, , .		0
335	Effects of N2O Fluence on the PECVD-grown Si-rich SiOx with Buried Si Nanocrystals. Materials Research Society Symposia Proceedings, 2005, 862, 19111.	0.1	0
336	Light-Emitting β-Fe(Si[sub X]Ge[sub 1â^'X])[sub 2] Nanodots on Si[sub 0.8]Ge[sub 0.2] Substrate. Electrochemical and Solid-State Letters, 2005, 8, G137.	2.2	0
337	Low-temperature synthesis of silica-enhanced gallium nitride nanowires on silicon substrate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1635-1639.	0.9	0
338	Characterization of large area Cu(In,Ga)Se <inf>2</inf> nanotip arrays via photoluminescence. , 2012, , .		0
339	Hybrid CIS/Si near-IR sensor and 16% PV energy-harvesting technology. , 2012, , .		0
340	Nanomaterials and Nanodevices for Energy Applications. Journal of Nanomaterials, 2014, 2014, 1-1.	1.5	0
341	Solar energy harvesting scheme utilizing low dimensional nanostructures. , 2015, , .		0
			-

#	Article	IF	CITATIONS
343	MoS2 -Based Photodetectors: Enhanced Photocarrier Generation with Selectable Wavelengths by M-Decorated-CuInS2 Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS2 Bilayers (Small 8/2019). Small, 2019, 15, 1970045.	5.2	0
344	Hair-Like Nanostructure Based Ion Detector by 16nm FinFET Technology. , 2020, , .		0
345	Role of phase transformation in possible wear mechanisms in silicon microelectromechanical-system devices. Materials Chemistry and Physics, 2020, 245, 122765.	2.0	0
346	2D Transition Metal Dichalcogenides: Hybridizing Plasmonic Materials with 2Dâ€Transition Metal Dichalcogenides toward Functional Applications (Small 15/2020). Small, 2020, 16, 2070081.	5.2	0
347	Adhesive Wet Metallization on TiO ₂ -Coated Glass. Journal of the Electrochemical Society, 2021, 168, 042506.	1.3	0
348	Synthesis and Characterization of One-Dimensional Functional Metal Oxide and Metallic Silicide Nanostructures. , 2012, , 767-839.		0
349	Realizing thermal strain of patterned sapphire substrates dominate the bandgap-shifted of bilayer MoS2. , 2017, , .		0
350	Two cases of progressive light-matter interaction by plasmonics: a super plasmonic probe and an optimized nanoantenna. , 2018, , .		0
351	Metal- and Alloy-Based Core–Shell Particles in Nitrate Senary Salt with Low Thermal Hysteresis for Solar Thermal Energy Storage. ACS Applied Energy Materials, 2022, 5, 2697-2705.	2.5	0