
## Cunjiang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468779/publications.pdf Version: 2024-02-01



**CUNHANC YH** 

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological<br>electronic skin. Nano Research, 2022, 15, 758-764.                                                                                 | 10.4 | 26        |
| 2  | Interfacial assembly of metallic nanomembranes for highly stretchable conductors. Matter, 2022, 5, 15-17.                                                                                                                           | 10.0 | 6         |
| 3  | High-resolution patterning of organic semiconductors toward industrialization of flexible organic electronics. Matter, 2022, 5, 23-25.                                                                                              | 10.0 | 5         |
| 4  | A Skinâ€Mountable Hyperthermia Patch Based on Metal Nanofiber Network with High Transparency and Low Resistivity toward Subcutaneous Tumor Treatment. Advanced Functional Materials, 2022, 32, .                                    | 14.9 | 27        |
| 5  | Drawnâ€on‧kin Sensors from Fully Biocompatible Inks toward Highâ€Quality Electrophysiology. Small,<br>2022, 18, .                                                                                                                   | 10.0 | 12        |
| 6  | A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light: Science and Applications, 2022, 11, 59.                                                            | 16.6 | 31        |
| 7  | Allâ€Polymer Based Stretchable Rubbery Electronics and Sensors. Advanced Functional Materials, 2022,<br>32, .                                                                                                                       | 14.9 | 14        |
| 8  | A Skinâ€Mountable Hyperthermia Patch Based on Metal Nanofiber Network with High Transparency and<br>Low Resistivity toward Subcutaneous Tumor Treatment (Adv. Funct. Mater. 21/2022). Advanced<br>Functional Materials, 2022, 32, . | 14.9 | 3         |
| 9  | Flexible and Stretchable Organic Biosensors. , 2022, , 285-309.                                                                                                                                                                     |      | 0         |
| 10 | Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric<br>synaptic transistors. Proceedings of the National Academy of Sciences of the United States of<br>America, 2022, 119, .            | 7.1  | 25        |
| 11 | Highly Sensitive CuInS <sub>2</sub> /ZnS Core–Shell Quantum Dot Photodetectors. ACS Applied<br>Electronic Materials, 2021, 3, 1236-1243.                                                                                            | 4.3  | 14        |
| 12 | Flexible organic solar cells for biomedical devices. Nano Research, 2021, 14, 2891-2903.                                                                                                                                            | 10.4 | 19        |
| 13 | Recent Advances of Energy Solutions for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100199.                                                                                                              | 7.6  | 65        |
| 14 | Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nature<br>Electronics, 2021, 4, 513-521.                                                                                               | 26.0 | 87        |
| 15 | Recent advances in power supply strategies for untethered neural implants. Journal of Micromechanics and Microengineering, 2021, 31, 104003.                                                                                        | 2.6  | 4         |
| 16 | Wearable and Implantable Devices for Healthcare. Advanced Healthcare Materials, 2021, 10, e2101548.                                                                                                                                 | 7.6  | 15        |
| 17 | A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Science Advances, 2021, 7, .                                                                             | 10.3 | 89        |
| 18 | Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials. Advanced Materials, 2020, 32, e1902417.                                                                                                             | 21.0 | 95        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Flexible low-voltage paper transistors harnessing ion gel/cellulose fiber composites. Journal of<br>Materials Research, 2020, 35, 940-948.                                                                     | 2.6  | 10        |
| 20 | Mechanically flexible microfluidics for microparticle dispensing based on traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering, 2020, 30, 024001.                                  | 2.6  | 5         |
| 21 | Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nature Communications, 2020, 11, 3823.                                                 | 12.8 | 196       |
| 22 | An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nature Electronics, 2020, 3, 775-784.                               | 26.0 | 126       |
| 23 | Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Science Advances, 2020, 6, .                                                                         | 10.3 | 54        |
| 24 | Flexible and stretchable metalÂoxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nature Communications, 2020, 11, 2405.                                              | 12.8 | 174       |
| 25 | Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Advances, 2020, 10, 18694-18703.                                                             | 3.6  | 12        |
| 26 | Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces. Advanced<br>Materials Technologies, 2020, 5, .                                                                                | 5.8  | 80        |
| 27 | Recent advances in materials and device technologies for soft active matrix electronics. Journal of<br>Materials Chemistry C, 2020, 8, 10719-10731.                                                            | 5.5  | 9         |
| 28 | Stretchable Electronics: Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic<br>Materials (Adv. Mater. 15/2020). Advanced Materials, 2020, 32, 2070119.                                       | 21.0 | 1         |
| 29 | Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for<br>wearable human-machine interfaces. Science Advances, 2019, 5, eaav9653.                                      | 10.3 | 213       |
| 30 | Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems.<br>Science Advances, 2019, 5, eaax4961.                                                                       | 10.3 | 191       |
| 31 | Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Science Advances, 2019, 5, eaav5749.                                                               | 10.3 | 117       |
| 32 | Stretchable Electronics: Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on<br>Prestrained Elastomers (Adv. Mater. Technol. 1/2019). Advanced Materials Technologies, 2019, 4,<br>1970003. | 5.8  | 0         |
| 33 | Wearable Devices for Single-Cell Sensing andÂTransfection. Trends in Biotechnology, 2019, 37, 1175-1188.                                                                                                       | 9.3  | 23        |
| 34 | Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers. Applied Mathematics and Mechanics (English Edition), 2019, 40, 943-952.                   | 3.6  | 12        |
| 35 | Stretchable Electronics: Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics<br>(Adv. Mater. Technol. 4/2019). Advanced Materials Technologies, 2019, 4, 1970024.                          | 5.8  | 0         |
| 36 | Three-dimensional curvy electronics created using conformal additive stamp printing. Nature Electronics, 2019, 2, 471-479.                                                                                     | 26.0 | 131       |

| #  | Article                                                                                                                                                                                            | IF                | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 37 | Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL<br>Materials, 2019, 7, 031301.                                                                       | 5.1               | 37             |
| 38 | Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on Prestrained Elastomers.<br>Advanced Materials Technologies, 2019, 4, 1800489.                                               | 5.8               | 27             |
| 39 | Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics. Advanced Materials<br>Technologies, 2019, 4, 1800466.                                                                     | 5.8               | 4              |
| 40 | Fully rubbery stretchable electronics, sensors, and smart skins. , 2019, , .                                                                                                                       |                   | 0              |
| 41 | A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP<br>Advances, 2018, 8, .                                                                           | 1.3               | 19             |
| 42 | Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays. Npj Flexible Electronics, 2018, 2, .                                                          | 10.7              | 23             |
| 43 | Biaxially Stretchable Fully Elastic Transistors Based on Rubbery Semiconductor Nanocomposites.<br>Advanced Materials Technologies, 2018, 3, 1800043.                                               | 5.8               | 39             |
| 44 | Soft Ultrathin Silicon Electronics for Soft Neural Interfaces: A Review of Recent Advances of Soft<br>Neural Interfaces Based on Ultrathin Silicon. IEEE Nanotechnology Magazine, 2018, 12, 21-34. | 1.3               | 16             |
| 45 | Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots. Advanced Materials, 2018, 30, e1706695.                                                                                          | 21.0              | 301            |
| 46 | Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor. ACS Applied<br>Materials & Interfaces, 2018, 10, 5000-5006.                                                  | 8.0               | 103            |
| 47 | Soft and transient magnesium plasmonics for environmental and biomedical sensing. Nano Research, 2018, 11, 4390-4400.                                                                              | 10.4              | 21             |
| 48 | Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design and Manufacturing, 2018, 1, 215-224.                                                                                     | 7.7               | 143            |
| 49 | Transistors: Biaxially Stretchable Fully Elastic Transistors Based on Rubbery Semiconductor<br>Nanocomposites (Adv. Mater. Technol. 6/2018). Advanced Materials Technologies, 2018, 3, 1870022.    | 5.8               | 0              |
| 50 | Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq0 0 0                                                                                    | rgBT /Ove<br>21.0 | erlock 10 Tf 5 |
| 51 | Electrochemical-mechanically triggered transient electronics. , 2017, , .                                                                                                                          |                   | 1              |
| 52 | Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone)<br>Nanofibrous Polymer Films. Scientific Reports, 2017, 7, 947.                                 | 3.3               | 24             |
| 53 | Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.                                                                                         | 21.0              | 141            |
|    |                                                                                                                                                                                                    |                   |                |

54Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for<br/>wearable motion sensors. Journal of Materials Chemistry C, 2017, 5, 11092-11099.5.5112

| #  | Article                                                                                                                                                                                              | IF                 | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 55 | Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Science Advances, 2017, 3, e1701114.                                         | 10.3               | 229           |
| 56 | Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.                                                                                                            | 10.3               | 122           |
| 57 | Towards engineering integrated cardiac organoids: beating recorded. Journal of Thoracic Disease,<br>2016, 8, E1683-E1687.                                                                            | 1.4                | 6             |
| 58 | Synthetic adaptive optoelectronic color camouflage skins. , 2016, , .                                                                                                                                |                    | 0             |
| 59 | Stretchable Hydrogel Electronics and Devices. Advanced Materials, 2016, 28, 4497-4505.                                                                                                               | 21.0               | 550           |
| 60 | High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation.<br>Scientific Reports, 2015, 5, 16133.                                                                | 3.3                | 34            |
| 61 | Crack-Insensitive Wearable Electronics Enabled Through High-Strength Kevlar Fabrics. IEEE<br>Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1230-1236.                 | 2.5                | 9             |
| 62 | Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter, 2015, 11, 7953-7959.                                                                               | 2.7                | 31            |
| 63 | Photodetectors: Silicon-Based Visible-Blind Ultraviolet Detection and Imaging Using Down-Shifting<br>Luminophores (Advanced Optical Materials 4/2014). Advanced Optical Materials, 2014, 2, 313-313. | 7.3                | 1             |
| 64 | Allâ€Elastomeric, Strainâ€Responsive Thermochromic Color Indicators. Small, 2014, 10, 1266-1271.                                                                                                     | 10.0               | 56            |
| 65 | Siliconâ€Based Visibleâ€Blind Ultraviolet Detection and Imaging Using Downâ€Shifting Luminophores.<br>Advanced Optical Materials, 2014, 2, 314-319.                                                  | 7.3                | 55            |
| 66 | Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12998-13003.       | 7.1                | 197           |
| 67 | Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nature Communications, 2014, 5, 4938.                                          | 12.8               | 227           |
| 68 | Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics. Advanced Functional Materials, 2013,<br>23, 3299-3306.                                                                                | 14.9               | 199           |
| 69 | Electronically Programmable, Reversible Shape Change in Two- and Three-Dimensional Hydrogel<br>Structures (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1540-1540.                            | 21.0               | Ο             |
| 70 | Electronically Programmable, Reversible Shape Change in Two―and Threeâ€Dimensional Hydrogel<br>Structures. Advanced Materials, 2013, 25, 1541-1546.                                                  | 21.0               | 169           |
| 71 | Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communications, 2013, 4, 1543.                                                   | 12.8               | 1,169         |
| 72 | Shapeâ€Memory Polymers: Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics (Adv. Funct.) 1                                                                                                | j et <u>Qq</u> 0 0 | 0 rgBT /Overl |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Reactive nanolayers for physiologically compatible microsystem packaging. Journal of Materials<br>Science: Materials in Electronics, 2010, 21, 562-566.                                                             | 2.2  | 5         |
| 74 | Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films, 2010, 519, 818-822.                                                          | 1.8  | 79        |
| 75 | Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Applied Physics Letters, 2010, 96, .                                                                          | 3.3  | 107       |
| 76 | Film Bulk Acoustic-Wave Resonator based radiation sensor. , 2010, , .                                                                                                                                               |      | 2         |
| 77 | Laser dynamic forming of functional materials laminated composites on patterned three-dimensional surfaces with applications on flexible microelectromechanical systems. Applied Physics Letters, 2009, 95, 091108. | 3.3  | 27        |
| 78 | A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates. Applied Physics Letters, 2009, 95, .                                                                     | 3.3  | 111       |
| 79 | Stretchable Supercapacitors Based on Buckled Singleâ€Walled Carbonâ€Nanotube Macrofilms. Advanced<br>Materials, 2009, 21, 4793-4797.                                                                                | 21.0 | 627       |