Cunjiang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468779/publications.pdf

Version: 2024-02-01

		117625	85541
79	6,937	34	71
papers	citations	h-index	g-index
0.0	80	9.0	0260
80	80	80	9360
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communications, 2013, 4, 1543.	12.8	1,169
2	Stretchable Supercapacitors Based on Buckled Singleâ€Walled Carbonâ€Nanotube Macrofilms. Advanced Materials, 2009, 21, 4793-4797.	21.0	627
3	Stretchable Hydrogel Electronics and Devices. Advanced Materials, 2016, 28, 4497-4505.	21.0	550
4	Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots. Advanced Materials, 2018, 30, e1706695.	21.0	301
5	Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Science Advances, 2017, 3, e1701114.	10.3	229
6	Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nature Communications, 2014, 5, 4938.	12.8	227
7	Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Science Advances, 2019, 5, eaav9653.	10.3	213
8	Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics. Advanced Functional Materials, 2013, 23, 3299-3306.	14.9	199
9	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12998-13003.	7.1	197
10	Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nature Communications, 2020, 11, 3823.	12.8	196
11	Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Science Advances, 2019, 5, eaax4961.	10.3	191
12	Flexible and stretchable metalÂoxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nature Communications, 2020, 11, 2405.	12.8	174
13	Electronically Programmable, Reversible Shape Change in Two―and Threeâ€Dimensional Hydrogel Structures. Advanced Materials, 2013, 25, 1541-1546.	21.0	169
14	Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design and Manufacturing, 2018, 1, 215-224.	7.7	143
15	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	21.0	141
16	Three-dimensional curvy electronics created using conformal additive stamp printing. Nature Electronics, 2019, 2, 471-479.	26.0	131
17	An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nature Electronics, 2020, 3, 775-784.	26.0	126
18	Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.	10.3	122

#	Article	IF	CITATIONS
19	Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Science Advances, 2019, 5, eaav5749.	10.3	117
20	Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. Journal of Materials Chemistry C, 2017, 5, 11092-11099.	5.5	112
21	A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates. Applied Physics Letters, 2009, 95, .	3.3	111
22	Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Applied Physics Letters, 2010, 96, .	3.3	107
23	Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5000-5006.	8.0	103
24	Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials. Advanced Materials, 2020, 32, e1902417.	21.0	95
25	A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Science Advances, 2021, 7, .	10.3	89
26	Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nature Electronics, 2021, 4, 513-521.	26.0	87
27	Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces. Advanced Materials Technologies, 2020, 5, .	5.8	80
28	Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films, 2010, 519, 818-822.	1.8	79
29	Recent Advances of Energy Solutions for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100199.	7.6	65
30	Allâ€Elastomeric, Strainâ€Responsive Thermochromic Color Indicators. Small, 2014, 10, 1266-1271.	10.0	56
31	Siliconâ€Based Visibleâ€Blind Ultraviolet Detection and Imaging Using Downâ€Shifting Luminophores. Advanced Optical Materials, 2014, 2, 314-319.	7. 3	55
32	Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Science Advances, 2020, 6, .	10.3	54
33	Biaxially Stretchable Fully Elastic Transistors Based on Rubbery Semiconductor Nanocomposites. Advanced Materials Technologies, 2018, 3, 1800043.	5.8	39
34	Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Materials, 2019, 7, 031301.	5.1	37
35	High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation. Scientific Reports, 2015, 5, 16133.	3.3	34
36	Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter, 2015, 11, 7953-7959.	2.7	31

#	Article	IF	CITATIONS
37	A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light: Science and Applications, 2022, 11, 59.	16.6	31
38	Laser dynamic forming of functional materials laminated composites on patterned three-dimensional surfaces with applications on flexible microelectromechanical systems. Applied Physics Letters, 2009, 95, 091108.	3.3	27
39	Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on Prestrained Elastomers. Advanced Materials Technologies, 2019, 4, 1800489.	5.8	27
40	A Skinâ€Mountable Hyperthermia Patch Based on Metal Nanofiber Network with High Transparency and Low Resistivity toward Subcutaneous Tumor Treatment. Advanced Functional Materials, 2022, 32, .	14.9	27
41	Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Research, 2022, 15, 758-764.	10.4	26
42	Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
43	Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films. Scientific Reports, 2017, 7, 947.	3.3	24
44	Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays. Npj Flexible Electronics, 2018, 2, .	10.7	23
45	Wearable Devices for Single-Cell Sensing andÂTransfection. Trends in Biotechnology, 2019, 37, 1175-1188.	9.3	23
46	Soft and transient magnesium plasmonics for environmental and biomedical sensing. Nano Research, 2018, 11, 4390-4400.	10.4	21
47	A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP Advances, 2018, 8, .	1.3	19
48	Flexible organic solar cells for biomedical devices. Nano Research, 2021, 14, 2891-2903.	10.4	19
49	Soft Ultrathin Silicon Electronics for Soft Neural Interfaces: A Review of Recent Advances of Soft Neural Interfaces Based on Ultrathin Silicon. IEEE Nanotechnology Magazine, 2018, 12, 21-34.	1.3	16
50	Wearable and Implantable Devices for Healthcare. Advanced Healthcare Materials, 2021, 10, e2101548.	7.6	15
51	Highly Sensitive CulnS ₂ /ZnS Core–Shell Quantum Dot Photodetectors. ACS Applied Electronic Materials, 2021, 3, 1236-1243.	4.3	14
52	Allâ€Polymer Based Stretchable Rubbery Electronics and Sensors. Advanced Functional Materials, 2022, 32, .	14.9	14
53	Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers. Applied Mathematics and Mechanics (English Edition), 2019, 40, 943-952.	3.6	12
54	Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Advances, 2020, 10, 18694-18703.	3.6	12

#	Article	IF	CITATIONS
55	Drawnâ€onâ€Skin Sensors from Fully Biocompatible Inks toward Highâ€Quality Electrophysiology. Small, 2022, 18, .	10.0	12
56	Flexible low-voltage paper transistors harnessing ion gel/cellulose fiber composites. Journal of Materials Research, 2020, 35, 940-948.	2.6	10
57	Crack-Insensitive Wearable Electronics Enabled Through High-Strength Kevlar Fabrics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1230-1236.	2.5	9
58	Recent advances in materials and device technologies for soft active matrix electronics. Journal of Materials Chemistry C, 2020, 8, 10719-10731.	5.5	9
59	Towards engineering integrated cardiac organoids: beating recorded. Journal of Thoracic Disease, 2016, 8, E1683-E1687.	1.4	6
60	Interfacial assembly of metallic nanomembranes for highly stretchable conductors. Matter, 2022, 5, 15-17.	10.0	6
61	Reactive nanolayers for physiologically compatible microsystem packaging. Journal of Materials Science: Materials in Electronics, 2010, 21, 562-566.	2.2	5
62	Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 5
63	Mechanically flexible microfluidics for microparticle dispensing based on traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering, 2020, 30, 024001.	2.6	5
64	High-resolution patterning of organic semiconductors toward industrialization of flexible organic electronics. Matter, 2022, 5, 23-25.	10.0	5
65	Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics. Advanced Materials Technologies, 2019, 4, 1800466.	5.8	4
66	Recent advances in power supply strategies for untethered neural implants. Journal of Micromechanics and Microengineering, 2021, 31, 104003.	2.6	4
67	Shapeâ€Memory Polymers: Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics (Adv. Funct.) Tj	ETQq1 1	0.7 <mark>8</mark> 4314 rgl
68	A Skinâ€Mountable Hyperthermia Patch Based on Metal Nanofiber Network with High Transparency and Low Resistivity toward Subcutaneous Tumor Treatment (Adv. Funct. Mater. 21/2022). Advanced Functional Materials, 2022, 32, .	14.9	3
69	Film Bulk Acoustic-Wave Resonator based radiation sensor. , 2010, , .		2
7 0	Photodetectors: Silicon-Based Visible-Blind Ultraviolet Detection and Imaging Using Down-Shifting Luminophores (Advanced Optical Materials 4/2014). Advanced Optical Materials, 2014, 2, 313-313.	7.3	1
71	Electrochemical-mechanically triggered transient electronics. , 2017, , .		1
72	Stretchable Electronics: Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials (Adv. Mater. 15/2020). Advanced Materials, 2020, 32, 2070119.	21.0	1

#	Article	IF	CITATIONS
73	Electronically Programmable, Reversible Shape Change in Two- and Three-Dimensional Hydrogel Structures (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1540-1540.	21.0	0
74	Synthetic adaptive optoelectronic color camouflage skins. , 2016, , .		0
75	Transistors: Biaxially Stretchable Fully Elastic Transistors Based on Rubbery Semiconductor Nanocomposites (Adv. Mater. Technol. 6/2018). Advanced Materials Technologies, 2018, 3, 1870022.	5.8	0
76	Stretchable Electronics: Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on Prestrained Elastomers (Adv. Mater. Technol. 1/2019). Advanced Materials Technologies, 2019, 4, 1970003.	5.8	0
77	Stretchable Electronics: Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics (Adv. Mater. Technol. 4/2019). Advanced Materials Technologies, 2019, 4, 1970024.	5.8	0
78	Fully rubbery stretchable electronics, sensors, and smart skins. , 2019, , .		0
79	Flexible and Stretchable Organic Biosensors. , 2022, , 285-309.		O