Yang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468452/publications.pdf

Version: 2024-02-01

38742 30922 10,632 106 50 102 citations h-index g-index papers 107 107 107 13462 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Injectable Fiber Electronics for Tumor Treatment. Advanced Fiber Materials, 2022, 4, 246-255.	16.1	21
2	Highâ€Efficiency and Stable Liâ^'CO ₂ Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
3	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021, 9, 1463-1470.	10.3	31
4	Deep Non-Negative Matrix Factorization Architecture Based on Underlying Basis Images Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 1897-1913.	13.9	42
5	Progressive Kernel Pruning Based on the Information Mapping Sparse Index for CNN Compression. IEEE Access, 2021, 9, 10974-10987.	4.2	7
6	Onâ€demand field shaping for enhanced magnetic resonance imaging using an ultrathin reconfigurable metasurface. View, 2021, 2, 20200099.	5. 3	13
7	Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects. Nature Nanotechnology, 2021, 16, 717-724.	31.5	15
8	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€Ion Adsorbing. Angewandte Chemie - International Edition, 2021, 60, 17419-17425.	through	39
9	Nonlinear loose coupled non-negative matrix factorization for low-resolution image recognition. Neurocomputing, 2021, 443, 183-198.	5.9	5
10	Quantifying molecular- to cellular-level forces in living cells. Journal Physics D: Applied Physics, 2021, 54, 483001.	2.8	5
11	Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. Applied Physics Reviews, 2021, 8, .	11.3	31
12	A wearable metasurface for high efficiency, free-positioning omnidirectional wireless power transfer. New Journal of Physics, 2021, 23, 125003.	2.9	6
13	Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-lon Battery with Ultralong Stability. Nano Letters, 2021, 21, 9651-9660.	9.1	77
14	Gradually Crosslinking Carbon Nanotube Array in Mimicking the Beak of Giant Squid for Compressionâ€6ensing Supercapacitor. Advanced Functional Materials, 2020, 30, 1902971.	14.9	18
15	Making Fiberâ€Shaped Ni//Bi Battery Simultaneously with High Energy Density, Power Density, and Safety. Advanced Functional Materials, 2020, 30, 1905971.	14.9	40
16	Li O ₂ Batteries Efficiently Working at Ultra‣ow Temperatures. Advanced Functional Materials, 2020, 30, 2001619.	14.9	61
17	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	13.8	119
18	Optical force microscopy: combining light with atomic force microscopy for nanomaterial identification. Nanophotonics, 2019, 8, 1659-1671.	6.0	3

#	Article	IF	CITATIONS
19	Multi-layer radial basis function neural network based on multi-scale kernel learning. Applied Soft Computing Journal, 2019, 82, 105541.	7.2	18
20	Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nature Nanotechnology, 2019, 14, 465-472.	31.5	349
21	In Situ Intercalation of Bismuth into 3D Reduced Graphene Oxide Scaffolds for High Capacity and Long Cycleâ€Life Energy Storage. Small, 2019, 15, e1905903.	10.0	11
22	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	13.8	111
23	Molecular Layer Deposition for Energy Conversion and Storage. ACS Energy Letters, 2018, 3, 899-914.	17.4	123
24	High Capacity, Dendriteâ€Free Growth, and Minimum Volume Change Na Metal Anode. Small, 2018, 14, e1703717.	10.0	104
25	Robust Metallic Lithium Anode Protection by the Molecularâ€Layerâ€Deposition Technique. Small Methods, 2018, 2, 1700417.	8.6	84
26	Sticky-note supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3355-3360.	10.3	28
27	Aligning the binder effect on sodium–air batteries. Journal of Materials Chemistry A, 2018, 6, 1473-1484.	10.3	21
28	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	16.0	143
29	Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1654-1661.	8.0	85
30	Gel Polymer Electrolytes for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702184.	19.5	674
31	Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy, 2018, 43, 368-375.	16.0	117
32	On the Cycling Performance of Naâ€O ₂ Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode. Advanced Functional Materials, 2018, 28, 1801904.	14.9	37
33	Response to "Comment on †Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers'― ACS Photonics, 2018, 5, 2535-2536.	6.6	5
34	Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31240-31248.	8.0	207
35	Superior performance of ordered macroporous TiNb 2 O 7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy, 2017, 34, 15-25.	16.0	351
36	Decoupling atomic-layer-deposition ultrafine RuO 2 for high-efficiency and ultralong-life Li-O 2 batteries. Nano Energy, 2017, 34, 399-407.	16.0	63

3

#	Article	lF	Citations
37	Temperature-dependent optical properties of titanium nitride. Applied Physics Letters, 2017, 110, .	3.3	83
38	Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 2017, 8, 14180.	12.8	375
39	Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Advanced Materials, 2017, 29, 1606663.	21.0	273
40	New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes. Nano Energy, 2017, 38, 19-27.	16.0	50
41	Atomic Layer Deposited Nonâ€Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials, 2017, 27, 1606662.	14.9	34
42	Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as Highâ€Performance Cathode. Advanced Materials, 2017, 29, 1703764.	21.0	119
43	Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues. Advanced Materials, 2017, 29, 1702713.	21.0	85
44	Nanoscopic control and quantification of enantioselective optical forces. Nature Nanotechnology, 2017, 12, 1055-1059.	31.5	83
45	Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31786-31793.	8.0	58
46	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. CheM, 2017, 3, 348-362.	11.7	194
47	Inorganic–Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. Nano Letters, 2017, 17, 5653-5659.	9.1	243
48	Recent Developments and Understanding of Novel Mixed Transitionâ€Metal Oxides as Anodes in Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502175.	19.5	756
49	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	10.3	132
50	Carbon nanotubes cross-linked Zn2SnO4 nanoparticles/graphene networks as high capacities, long life anode materials for lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46, 851-860.	2.9	19
51	Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy, 2016, 24, 32-44.	16.0	132
52	Supervised kernel nonnegative matrix factorization for face recognition. Neurocomputing, 2016, 205, 165-181.	5.9	59
53	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2016, 55, 14384-14388.	13.8	191
54	Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface. ACS Nano, 2016, 10, 9326-9333.	14.6	56

#	Article	IF	CITATIONS
55	Advances in Wearable Fiberâ€Shaped Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 4524-4531.	21.0	201
56	Magnetic graphene@PANI@porous TiO ₂ ternary composites for high-performance electromagnetic wave absorption. Journal of Materials Chemistry C, 2016, 4, 6362-6370.	5.5	332
57	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie - International Edition, 2016, 55, 7979-7982.	13.8	211
58	Elastic and wearable ring-type supercapacitors. Journal of Materials Chemistry A, 2016, 4, 3217-3222.	10.3	34
59	Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5536-5546.	8.0	435
60	Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers. ACS Photonics, 2016, 3, 304-309.	6.6	144
61	Controlled synthesis of hollow Si–Ni–Sn nanoarchitectured electrode for advanced lithium-ion batteries. RSC Advances, 2016, 6, 23260-23264.	3.6	5
62	Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016, 2, 35-62.	18.0	483
63	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	13.8	97
64	A Shapeâ€Memory Supercapacitor Fiber. Angewandte Chemie - International Edition, 2015, 54, 15419-15423.	13.8	141
65	Preparation and application of hollow ZnFe2O4@PANI hybrids as high performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 107247-107253.	3.6	31
66	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	10.3	103
67	Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 762-769.	5.2	86
68	Electrospun SnO2â€"ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2015, 40, 14338-14344.	7.1	50
69	Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. Journal of Power Sources, 2015, 274, 869-884.	7.8	343
70	Recent advances on optical metasurfaces. Journal of Optics (United Kingdom), 2014, 16, 123001.	2.2	90
71	Alignmentâ€Free Threeâ€Ðimensional Optical Metamaterials. Advanced Materials, 2014, 26, 1439-1445.	21.0	41
72	Optical chirality enhancement in twisted metamaterials. , 2014, , .		1

#	Article	IF	Citations
73	Hydrothermal synthesis of flower-like Zn2SnO4 composites and their performance as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 8021-8025.	4.8	33
74	Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries. Electrochimica Acta, 2014, 120, 128-132.	5.2	38
75	One-pot hydrothermal synthesis of RGO/CoFe 2 O 4 composite and its excellent microwave absorption properties. Materials Letters, 2014, 114, 52-55.	2.6	137
76	Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2014, 147, 201-208.	5. 2	42
77	Hollow Zn2SnO4 boxes coated with N-doped carbon for advanced lithium-ion batteries. Ceramics International, 2014, 40, 2275-2280.	4.8	29
78	TiO2 supported on bamboo charcoal for H2O2-assisted pollutant degradation under solar light. Materials Science in Semiconductor Processing, 2014, 17, 124-128.	4.0	9
79	Facile synthesis and performance of polypyrrole-coated hollow Zn2SnO4 boxes as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 2359-2364.	4.8	32
80	Preparation of BaFe12O19 as anode material for lithium-ion batteries through sol–gel method. Journal of Sol-Gel Science and Technology, 2013, 66, 238-241.	2.4	8
81	Preparation of hollow Zn2SnO4 boxes for advanced lithium-ion batteries. RSC Advances, 2013, 3, 14480.	3.6	62
82	Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Materials Letters, 2013, 109, 112-115.	2.6	71
83	Grapheneâ€Supported <scp><scp>Ce</scp></scp> – <scp><scp>SnS</scp></scp> < ₂ Nanocomposite as Anode Material for Lithiumâ€ion Batteries. Journal of the American Ceramic Society, 2013, 96, 2190-2196.	3.8	47
84	Polyaniline(PANI) coated Zn2SnO4 cube as anode materials for lithium batteries. Polymer Testing, 2013, 32, 1582-1587.	4.8	20
85	Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: Synthesis and enhanced electromagnetic absorption properties. Materials Letters, 2013, 109, 146-150.	2.6	29
86	The study on the Li-storage performances of bamboo charcoal (BC) and BC/Li2SnO3 composites. Journal of Applied Electrochemistry, 2013, 43, 1243-1248.	2.9	7
87	Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Advances, 2013, 3, 23638.	3.6	346
88	Botryoidalis hollow Zn2SnO4 boxes@graphene as anode materials for advanced lithium-ion batteries. RSC Advances, 2013, 3, 23489.	3.6	30
89	One-pot simplified co-precipitation synthesis of reduced graphene oxide/Fe3O4 composite and its microwave electromagnetic properties. Materials Letters, 2013, 106, 22-25.	2.6	59
90	Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries. Ceramics International, 2013, 39, 1741-1747.	4.8	37

#	Article	IF	CITATIONS
91	Graphene supported poly-pyrrole(PPY)/Li 2 SnO 3 ternary composites as anode materials for lithium ion batteries. Ceramics International, 2013, 39, 6861-6866.	4.8	28
92	Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochimica Acta, 2013, 93, 120-130.	5.2	80
93	Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates. Nano Letters, 2013, 13, 1086-1091.	9.1	290
94	Preparation of Li ₂ SnO ₃ and its application in lithiumâ€ion batteries. Surface and Interface Analysis, 2013, 45, 1297-1303.	1.8	19
95	Graphene supported Li2SnO3 as anode material for lithium-ion batteries. Electronic Materials Letters, 2013, 9, 683-686.	2.2	19
96	Optical nanoantennas and their applications. , 2013, , .		6
97	Facile synthesis of RGO/Fe3O4/Ag composite with high microwave absorption capacity. Materials Letters, 2013, 111, 188-191.	2.6	49
98	An ultrathin quarter-wave nano-plate based on detuned plasmonic nanoantennas., 2012,,.		0
99	Hydrothermal derived Li2SnO3/C composite as negative electrode materials for lithium-ion batteries. Applied Surface Science, 2012, 258, 6923-6929.	6.1	32
100	Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries. Applied Surface Science, 2012, 258, 9896-9901.	6.1	42
101	Synthesis and properties of carbon-doped Li2SnO3 nanocomposite as cathode material for lithium-ion batteries. Materials Letters, 2012, 71, 66-69.	2.6	27
102	Broadband circular polarizers using plasmonic metasurfaces. , 2011, , .		1
103	Optical metasurfaces with robust angular response on flexible substrates. Applied Physics Letters, 2011, 99, .	3.3	47
104	Multiband Mobility in Semiconducting Carbon Nanotubes. IEEE Electron Device Letters, 2009, 30, 1078-1080.	3.9	60
105	Delay-Time-Enhanced Flat-Band Photonic Crystal Waveguides with Capsule-Shaped Holes on Silicon Nanomembrane. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1510-1514.	2.9	3
106	Silicon nano-membranes for efficient large angle optical beam steering. , 2009, , .		0