List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of tuned liquid column dampers. Engineering Structures, 1997, 19, 476-486.	5.3	208
2	Control of Alongâ€Wind Response of Structures by Mass and Liquid Dampers. Journal of Engineering Mechanics - ASCE, 1992, 118, 20-39.	2.9	162
3	Performance of tuned mass dampers under wind loads. Engineering Structures, 1995, 17, 655-667.	5.3	161
4	Physical and numerical modelling of thunderstorm downbursts. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89, 535-552.	3.9	155
5	Wind tunnel study of pedestrian level wind environment around tall buildings: Effects of building dimensions, separation and podium. Building and Environment, 2012, 49, 167-181.	6.9	152
6	A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning. Building and Environment, 2015, 91, 263-270.	6.9	148
7	Characteristics of liquid column vibration absorbers (LCVA)—I. Engineering Structures, 1997, 19, 126-134.	5.3	146
8	A longitudinal investigation of work environment stressors on the performance and wellbeing of office workers. Applied Ergonomics, 2016, 52, 104-111.	3.1	143
9	Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments. Applied Energy, 2018, 226, 682-689.	10.1	138
10	Interference excitation of twin tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1985, 21, 323-338.	3.9	128
11	Use of viscoelastic dampers in reducing wind- and earthquake-induced motion of building structures. Engineering Structures, 1995, 17, 639-654.	5.3	115
12	Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Applied Physics Letters, 2019, 115, .	3.3	109
13	Perception of vibration and occupant comfort in wind-excited tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97, 368-380.	3.9	108
14	Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. Journal of Geodesy, 2010, 84, 145-158.	3.6	105
15	Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions. Building and Environment, 2017, 117, 84-99.	6.9	101
16	Effect of edge configuration on wind-induced response of tall buildings. Engineering Structures, 1988, 10, 135-140.	5.3	98
17	Aerodynamic modification to a circular cylinder to enhance the piezoelectric wind energy harvesting. Applied Physics Letters, 2016, 109, .	3.3	98
18	Characteristics of liquid column vibration absorbers (LCVA)—II. Engineering Structures, 1997, 19, 135-144.	5.3	90

#	Article	IF	CITATIONS
19	New criteria for assessing low wind environment at pedestrian level in Hong Kong. Building and Environment, 2017, 123, 23-36.	6.9	90
20	Economic perspectives of aerodynamic treatments of square tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97, 455-467.	3.9	89
21	Characteristics of multiple tuned liquid column dampers in suppressing structural vibration. Engineering Structures, 1999, 21, 316-331.	5.3	85
22	Deep learning-based investigation of wind pressures on tall building under interference effects. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201, 104138.	3.9	82
23	Predicting wind pressures around circular cylinders using machine learning techniques. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198, 104099.	3.9	81
24	Wind loads on industrial solar panel arrays and supporting roof structure. Wind and Structures, an International Journal, 2001, 4, 481-494.	0.8	77
25	Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate. Applied Physics Letters, 2017, 111, .	3.3	76
26	Effect of building shape on wind-induced response of tall building. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28, 381-390.	3.9	75
27	Active control of along wind response of tall building using a fuzzy controller. Engineering Structures, 2001, 23, 1512-1522.	5.3	71
28	Wind-Induced Lock-In Excitation of Tall Structures. Journal of the Structural Division, 1981, 107, 57-72.	0.2	71
29	Wind loads on circular storage bins, silos and tanks: I. Point pressure measurements on isolated structures. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 31, 165-187.	3.9	67
30	Investigation of indoor air pollutant dispersion and cross-contamination around a typical high-rise residential building: Wind tunnel tests. Building and Environment, 2010, 45, 1769-1778.	6.9	64
31	Large eddy simulation of flow around an inclined finite square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146, 172-184.	3.9	63
32	Adopting â€~lift-up' building design to improve the surrounding pedestrian-level wind environment. Building and Environment, 2017, 117, 154-165.	6.9	61
33	Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110, 50-61.	3.9	60
34	Evaluation of pedestrian wind comfort near â€~lift-up' buildings with different aspect ratios and central core modifications. Building and Environment, 2017, 124, 245-257.	6.9	58
35	Damping Increase in Building with Tuned Mass Damper. Journal of Engineering Mechanics - ASCE, 1984, 110, 1645-1649.	2.9	57
36	Aerodynamic Devices for Tall Buildings and Structures. Journal of Engineering Mechanics - ASCE, 1987, 113, 349-365.	2.9	55

#	Article	IF	CITATIONS
37	Eigenvector modes of fluctuating pressures on low-rise building models. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71, 697-707.	3.9	55
38	Utilizing cavity flow within double skin façade for wind energy harvesting in buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167, 114-127.	3.9	55
39	Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism. Applied Physics Letters, 2016, 108, .	3.3	53
40	Wind-induced responses of a tall building with a double-skin façade system. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168, 91-100.	3.9	53
41	Control of wind-induced tall building vibration by tuned mass dampers. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40, 1-32.	3.9	52
42	The effect of tuned mass dampers and liquid dampers on cross-wind response of tall/slender structures. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40, 33-54.	3.9	52
43	Wind Tunnel Tests for Wind-Excited Benchmark Building. Journal of Engineering Mechanics - ASCE, 2004, 130, 447-450.	2.9	52
44	Characteristics of air pollutant dispersion around a high-rise building. Environmental Pollution, 2015, 204, 280-288.	7.5	51
45	Cross-wind response of tall buildings. Engineering Structures, 1982, 4, 256-262.	5.3	50
46	Pedestrian-level wind environment around isolated buildings under the influence of twisted wind flows. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 162, 12-23.	3.9	49
47	Performance and Cost Evaluation of a Smart Tuned Mass Damper for Suppressing Wind-Induced Lateral-Torsional Motion of Tall Structures. Journal of Structural Engineering, 2012, 138, 514-525.	3.4	47
48	Galloping of forward and backward inclined slender square cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142, 232-245.	3.9	46
49	Active Control of Cross Wind Response of 76-Story Tall Building Using a Fuzzy Controller. Journal of Engineering Mechanics - ASCE, 2004, 130, 492-498.	2.9	45
50	Mode shape corrections for wind tunnel tests of tall buildings. Engineering Structures, 1993, 15, 387-392.	5.3	44
51	Interference excitation mechanisms on a 3DOF aeroelastic CAARC building model. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92, 1299-1314.	3.9	44
52	Fuzzy Controller for Seismically Excited Nonlinear Buildings. Journal of Engineering Mechanics - ASCE, 2004, 130, 407-415.	2.9	44
53	Simulation of twisted wind flows in a boundary layer wind tunnel for pedestrian-level wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159, 99-109.	3.9	44
54	Machine learning-based prediction of crosswind vibrations of rectangular cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211, 104549.	3.9	44

#	Article	IF	CITATIONS
55	Interference effects on wind-induced coupled motion of a tall building. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90, 1807-1815.	3.9	41
56	Vibration Control of a Wind-Excited Benchmark Tall Building with Complex Lateral-Torsional Modes of Vibration. Advances in Structural Engineering, 2007, 10, 283-304.	2.4	41
57	Mode shape linearization for HFBB analysis of wind-excited complex tall buildings. Engineering Structures, 2009, 31, 675-685.	5.3	41
58	Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes. Engineering Structures, 2010, 32, 1252-1261.	5.3	41
59	Full-scale measurements of wind-induced acceleration response of Sydney Tower. Engineering Structures, 1990, 12, 153-162.	5.3	40
60	Flow-induced vibrations of four circular cylinders with square arrangement at low Reynolds numbers. Ocean Engineering, 2015, 96, 21-33.	4.3	40
61	Effects of twisted wind flows on wind conditions in passages between buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167, 87-100.	3.9	40
62	Wake-induced vibration interference between a fixed square cylinder and a 2-DOF downstream square cylinder at low Reynolds numbers. Ocean Engineering, 2018, 164, 698-711.	4.3	40
63	CFD simulation of the effect of an upstream building on the inter-unit dispersion in a multi-story building in two wind directions. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 150, 31-41.	3.9	38
64	Air pollutant dispersion around high-rise buildings under different angles of wind incidence. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167, 51-61.	3.9	38
65	Measurement of unsteady aerodynamic force on a galloping prism in a turbulent flow: A hybrid aeroelastic-pressure balance. Journal of Fluids and Structures, 2021, 102, 103232.	3.4	38
66	Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings. Wind and Structures, an International Journal, 2007, 10, 401-420.	0.8	37
67	Stiffness Optimization for Wind-Induced Dynamic Serviceability Design of Tall Buildings. Journal of Structural Engineering, 2009, 135, 985-997.	3.4	36
68	Occupant comfort in wind-excited tall buildings: Motion sickness, compensatory behaviours and complaint. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119, 1-12.	3.9	36
69	Performance-based design optimization of tall concrete framed structures subject to wind excitations. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139, 70-81.	3.9	36
70	Aerodynamic mechanisms of galloping of an inclined square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148, 6-17.	3.9	36
71	Frequency Dependence of Human Response to Wind-Induced Building Motion. Journal of Structural Engineering, 2006, 132, 296-303.	3.4	35
72	Unsteady pressure measurements on an oscillating slender prism using a forced vibration technique. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170, 81-93.	3.9	33

#	Article	IF	CITATIONS
73	Aerodynamic damping of inclined slender prisms. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177, 79-91.	3.9	33
74	Pedestrian-level wind conditions in the space underneath lift-up buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179, 58-69.	3.9	33
75	Dynamic characteristics and wind-induced response of two high-rise residential buildings during typhoons. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93, 461-482.	3.9	32
76	Evaluation of RANS turbulence models for simulating wind-induced mean pressures and dispersions around a complex-shaped high-rise building. Building Simulation, 2013, 6, 151-164.	5.6	31
77	The effects of a double-skin façade on the cladding pressure around a tall building. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191, 239-251.	3.9	31
78	Effects of building layouts and envelope features on wind flow and pollutant exposure in height-asymmetric street canyons. Building and Environment, 2021, 205, 108177.	6.9	31
79	Aspects of the dynamic wind-induced response of structures and codification. Wind and Structures, an International Journal, 2005, 8, 251-268.	0.8	31
80	Snowdrift around buildings for antarctic environment. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44, 2797-2808.	3.9	30
81	Snowdrifting simulation around Davis Station workshop, Antarctica. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50, 153-162.	3.9	30
82	Vibration Control of the Wind-Excited 76-Story Benchmark Building by Liquid Column Vibration Absorbers. Journal of Engineering Mechanics - ASCE, 2004, 130, 478-485.	2.9	30
83	Machine learning-enabled estimation of crosswind load effect on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220, 104860.	3.9	29
84	Full-scale damping measurements of structures in Australia. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59, 349-364.	3.9	28
85	Potential application of double skin façade incorporating aerodynamic modifications for wind energy harvesting. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174, 269-280.	3.9	28
86	Particle image velocimetry measurement and CFD simulation of pedestrian level wind environment around U-type street canyon. Building and Environment, 2019, 154, 239-251.	6.9	27
87	Application of through-building openings for wind energy harvesting in built environment. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184, 445-455.	3.9	27
88	Aeroelastic torsional behaviour of tall buildings in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51, 229-248.	3.9	26
89	Effects of building lift-up design on the wind environment for pedestrians. Indoor and Built Environment, 2017, 26, 1214-1231.	2.8	26
90	Freestream Turbulence Effects on Galloping. Journal of the Engineering Mechanics Division, 1980, 106, 273-288.	0.4	26

#	Article	IF	CITATIONS
91	Wind-induced response of soil-structure-damper systems. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43, 2057-2068.	3.9	25
92	Semianalytical Method for Parametric Study of Tuned Mass Dampers. Journal of Structural Engineering, 1994, 120, 747-764.	3.4	25
93	Analysis of concentration fluctuations in gas dispersion around high-rise building for different incident wind directions. Journal of Hazardous Materials, 2011, 192, 1623-1632.	12.4	25
94	A longitudinal field study of the effects of wind-induced building motion on occupant wellbeing and work performance. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133, 39-51.	3.9	25
95	Computational fluid dynamics–discrete element method analysis of the onset of scour around subsea pipelines. Applied Mathematical Modelling, 2015, 39, 7611-7619.	4.2	25
96	Effects of envelope features on wind flow and pollutant exposure in street canyons. Building and Environment, 2020, 176, 106862.	6.9	25
97	Dynamic characteristics and wind induced response of a steel frame tower. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55, 133-149.	3.9	24
98	Investigation of fire-driven cross-wind velocity enhancement. International Journal of Thermal Sciences, 2019, 141, 84-95.	4.9	24
99	Effect of pollutant source location on air pollutant dispersion around a high-rise building. Applied Mathematical Modelling, 2020, 81, 582-602.	4.2	24
100	Turbulence Effect on Flow Around Circular Cylinder. Journal of Engineering Mechanics - ASCE, 1986, 112, 1181-1197.	2.9	23
101	Cross Correlations of Modal Responses of Tall Buildings in Wind-Induced Lateral-Torsional Motion. Journal of Engineering Mechanics - ASCE, 2009, 135, 802-812.	2.9	23
102	Numerical Simulation of Vortex-Induced Vibration of Two Rigidly Connected Cylinders in Side-by-Side and Tandem Arrangements Using RANS Model. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	1.5	23
103	Performance of an omnidirectional piezoelectric wind energy harvester. Wind Energy, 2021, 24, 1167-1179.	4.2	23
104	Numerical Investigation of Bushfire-Wind Interaction and its Impact on Building Structure. Fire Safety Science, 2011, 10, 1449-1462.	0.3	23
105	Wind loads on circular storage bins, silos and tanks III. Fluctuating and peak pressure distributions. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 34, 319-337.	3.9	22
106	Wind loads on circular storage bins, silos and tanks. II. Effect of grouping. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 34, 77-95.	3.9	22
107	Critical mode control of a wind-loaded tall building using an active tuned mass damper. Engineering Structures, 1997, 19, 834-842.	5.3	22
108	Damping properties and wind-induced response of a steel frame tower fitted with liquid column vibration absorbers. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83, 183-196.	3.9	22

#	Article	IF	CITATIONS
109	Aerodynamic Coefficients of Inclined Circular Cylinders with Artificial Rivulet in Smooth Flow. Advances in Structural Engineering, 2006, 9, 265-278.	2.4	22
110	An integrated design technique of advanced linear-mode-shape method and serviceability drift optimization for tall buildings with lateral–torsional modes. Engineering Structures, 2010, 32, 2146-2156.	5.3	22
111	Local characteristics of cross-unit contamination around high-rise building due to wind effect: Mean concentration and infection risk assessment. Journal of Hazardous Materials, 2011, 192, 160-7.	12.4	22
112	Modelling unsteady self-excited wind force on slender prisms in a turbulent flow. Engineering Structures, 2020, 202, 109855.	5.3	22
113	Wind energy harvesting performance of tandem circular cylinders with triangular protrusions. Journal of Fluids and Structures, 2019, 91, 102780.	3.4	21
114	Interference effects on aeroelastic torsional response of structurally asymmetric tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57, 41-61.	3.9	20
115	MSSQ-Short Norms May Underestimate Highly Susceptible Individuals. Human Factors, 2015, 57, 622-633.	3.5	20
116	Wake-induced vibration of a small cylinder in the wake of a large cylinder. Ocean Engineering, 2016, 113, 75-89.	4.3	20
117	The fundamental human response to wind-induced building motion. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165, 79-85.	3.9	20
118	Experimental and theoretical investigation of galloping of transversely inclined slender prisms. Nonlinear Dynamics, 2018, 91, 1023-1040.	5.2	20
119	Aerodynamic performance of twin-box decks: A parametric study on gap width effects based on validated 2D URANS simulations. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182, 202-221.	3.9	20
120	Effect of building cross-section shape on air pollutant dispersion around buildings. Building and Environment, 2021, 197, 107861.	6.9	20
121	A CFD study of wind assessment in urban topology with complex wind flow. Sustainable Cities and Society, 2021, 71, 103006.	10.4	20
122	Low-frequency physiological activation of the vestibular utricle causes biphasic modulation of skin sympathetic nerve activity in humans. Experimental Brain Research, 2012, 220, 101-108.	1.5	19
123	Modulation of muscle sympathetic nerve activity by low-frequency physiological activation of the vestibular utricle in awake humans. Experimental Brain Research, 2013, 230, 137-142.	1.5	19
124	Performance assessment of a special Double Skin Façade system for wind energy harvesting and a case study. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175, 292-304.	3.9	19
125	Numerical simulation of wind-induced mean and peak pressures around a low-rise structure. Engineering Structures, 2020, 214, 110583.	5.3	19
126	Predicting wind flow around buildings using deep learning. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 219, 104820.	3.9	19

#	Article	IF	CITATIONS
127	Measurements of topographic multipliers and flow separation from a steep escarpment. Part II. Model-scale measurements. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71, 893-902.	3.9	18
128	A hybrid RANS and kinematic simulation of wind load effects on full-scale tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99, 1126-1138.	3.9	17
129	Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings. Wind and Structures, an International Journal, 2011, 14, 559-582.	0.8	17
130	Study of wind flow over a 6†m cube using improved delayed detached Eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179, 463-474.	3.9	16
131	Pressure measurements on inclined square prisms. Wind and Structures, an International Journal, 2015, 21, 383-405.	0.8	16
132	Full-scale measurements of wind-induced response of Sydney Tower. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14, 307-318.	3.9	15
133	Vestibular modulation of muscle sympathetic nerve activity by the utricle during sub-perceptual sinusoidal linear acceleration in humans. Experimental Brain Research, 2014, 232, 1379-1388.	1.5	15
134	Integrating twisted wind profiles to Air Ventilation Assessment (AVA): The current status. Building and Environment, 2018, 135, 297-307.	6.9	15
135	Vortex induced vibration of an inclined finite-length square cylinder. European Journal of Mechanics, B/Fluids, 2018, 68, 144-152.	2.5	15
136	Numerical study on the effect of the supersaturated vapor on the performance of a gas cyclone. Powder Technology, 2020, 366, 324-336.	4.2	15
137	Torsion response and vibration suppression of wind-excited buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43, 1997-2008.	3.9	14
138	Full-scale measurements of wind-induced response of an 84 m high concrete control tower. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60, 155-165.	3.9	14
139	A two-degree-of-freedom base hinged aeroelastic (BHA) model for response predictions. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83, 171-181.	3.9	14
140	Wind tunnel investigation of active vibration control of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55, 397-412.	3.9	13
141	Field Measurements of Dynamic Properties of High-Rise Buildings. Advances in Structural Engineering, 2011, 14, 1107-1128.	2.4	13
142	Particle Image Velocimetry measurement of flow around an inclined square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168, 134-140.	3.9	13
143	Equivalent wind incidence angle method: A new technique to integrate the effects of twisted wind flows to AVA. Building and Environment, 2018, 139, 46-57.	6.9	13
144	Wind-induced deflections of freestanding lattice towers. Engineering Structures, 1997, 19, 79-91.	5.3	12

#	Article	IF	CITATIONS
145	Mode shape linearization and correction in coupled dynamic analysis of windâ€excited tall buildings. Structural Design of Tall and Special Buildings, 2011, 20, 327-348.	1.9	12
146	Statistical extremes and peak factors in wind-induced vibration of tall buildings. Journal of Zhejiang University: Science A, 2012, 13, 18-32.	2.4	12
147	Investigation of terrain slope effects on wind enhancement by a line source fire. Case Studies in Thermal Engineering, 2019, 14, 100467.	5.7	12
148	Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width. Wind and Structures, an International Journal, 2007, 10, 463-479.	0.8	12
149	A review of two theories of motion sickness and their implications for tall building motion sway. Wind and Structures, an International Journal, 2011, 14, 499-515.	0.8	12
150	Sopite syndrome in wind-excited buildings: productivity and wellbeing impacts. Building Research and Information, 2017, 45, 347-358.	3.9	11
151	Numerical analysis of wind velocity effects on fire-wind enhancement. International Journal of Heat and Fluid Flow, 2019, 80, 108471.	2.4	11
152	Implications of full-scale building motion experience for serviceability design. Wind and Structures, an International Journal, 2011, 14, 537-557.	0.8	11
153	RANS simulation of near-field dispersion of reactive air pollutants. Building and Environment, 2022, 207, 108553.	6.9	11
154	Vestibular modulation of muscle sympathetic nerve activity during sinusoidal linear acceleration in supine humans. Frontiers in Neuroscience, 2014, 8, 316.	2.8	10
155	The Polemics of C.L.R. James and Contemporary Black Activism. , 2017, , .		10
156	CFD-based analysis of urban haze-fog dispersion—A preliminary study. Building Simulation, 2021, 14, 365-375.	5.6	10
157	Aerodynamic effect of wind induced torsion on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50, 271-280.	3.9	9
158	On-site evaluation of pedestrian-level air quality at a U-type street canyon in an ancient city. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168, 322-333.	3.9	9
159	The influence of envelope features on interunit dispersion around a naturally ventilated multi-story building. Building Simulation, 2018, 11, 1245-1253.	5.6	9
160	Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs. Steel and Composite Structures, 2016, 22, 537-565.	1.3	9
161	Effects of Turbulence on the Pressure Distribution Around a Square Cylinder and Possibility of Reduction. Journal of Fluids Engineering, Transactions of the ASME, 1983, 105, 140-145.	1.5	8
162	Torsional vibration and stability of wind-excited tall buildings with eccentricity. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50, 299-308.	3.9	8

#	Article	IF	CITATIONS
163	Occupant response to wind-excited buildings: a multidisciplinary perspective. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 625-634.	0.8	8
164	LES simulation of terrain slope effects on wind enhancement by a point source fire. Case Studies in Thermal Engineering, 2020, 18, 100588.	5.7	8
165	Non-wind-induced nonlinear damping and stiffness on slender prisms: a forced vibration-pressure balance. Engineering Structures, 2020, 207, 110107.	5.3	8
166	Active control of wind excited structures using fuzzy logic. , 1999, , .		7
167	Wind-induced responses of tall buildings experiencing complex motion. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90, 515-526.	3.9	7
168	Exploratory analyses and modelling of parameters influencing occupant behaviour due to low-frequency random building motion. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 115, 82-92.	3.9	7
169	Power generation analysis of PowerWindow, a linear wind generator, using computational fluid dynamic simulations. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147, 226-238.	3.9	7
170	Dynamic simulation of unrestrained interlocking Tuned Liquid Damper blocks. Construction and Building Materials, 2017, 144, 586-597.	7.2	7
171	Numerical Analysis of the Effect of Fire Source Configuration on Fire-Wind Enhancement. Heat Transfer Engineering, 2021, 42, 41-60.	1.9	7
172	Probabilistic assessment of vibration exceedance for a fullâ€scale tall building under typhoon conditions. Structural Design of Tall and Special Buildings, 2018, 27, e1516.	1.9	6
173	Building integration of statorâ€augmented PowerWindow, a linear cascade wind turbine. Energy Science and Engineering, 2019, 7, 581-598.	4.0	6
174	Correlations for fire-wind enhancement flow characteristics based on LES simulations. International Journal of Heat and Fluid Flow, 2020, 82, 108558.	2.4	6
175	Effect of low frequency motion on the performance of a dynamic manual tracking task. Wind and Structures, an International Journal, 2011, 14, 517-536.	0.8	6
176	Finite element modelling of modular precast composites for railway track support structure: A battle to save Sydney Harbour Bridge. Australian Journal of Structural Engineering, 2015, 16, .	1.1	5
177	A computational study on the aerodynamics of a twin-box bridge with a focus on the spanwise features. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 209, 104465.	3.9	5
178	Air pollutant dispersion around high-rise buildings due to roof emissions. Building and Environment, 2022, 219, 109215.	6.9	5
179	Dynamics of a freestanding steel lighting tower. Engineering Structures, 1985, 7, 46-50.	5.3	4
180	Visually induced motion sickness after watching scenes oscillating at different frequencies and amplitudes. , 2012, , 253-260.		4

#	Article	IF	CITATIONS
181	Bushfire-enhanced wind load on structures. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2012, 165, 253-263.	0.4	4
182	Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans. Frontiers in Neuroscience, 2016, 10, 39.	2.8	4
183	The effects of motion sickness and sopite syndrome on office workers in an 18-month field study of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 186, 105-122.	3.9	4
184	LES analysis on the effects of baroclinic generation of vorticity on fire-wind enhancement. International Journal of Thermal Sciences, 2021, 162, 106775.	4.9	4
185	Wind Tunnel Model Study of Environmental Wind Conditions Around Buildings. Architectural Science Review, 1980, 23, 57-62.	2.2	3
186	A reliability study of wind tunnel results for cladding pressures. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44, 2413-2424.	3.9	3
187	Further investigation of the blockage-tolerant wind tunnel technique. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71, 987-995.	3.9	3
188	The effects of installation configuration and solidity on the power generation of a linear cascade wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180, 122-135.	3.9	3
189	Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests. Wind and Structures, an International Journal, 2009, 12, 413-424.	0.8	3
190	Full-scale measurement and analysis of K11 building in Hong Kong during typhoon. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2012, 29, 45-50.	0.2	3
191	Closed-Form Optimum Liquid Column Vibration Absorber Parameters for Base-Excited Damped Structures. Advances in Structural Engineering, 2011, 14, 489-497.	2.4	2
192	Terrain Characterisation and Design Wind Profiles for Hong Kong. HKIE Transactions, 2011, 18, 2-9.	0.1	2
193	Aerodynamic analysis of a statorâ€augmented linear cascade wind turbine. Wind Energy, 2019, 22, 1148-1163.	4.2	2
194	Large-eddy simulation and wind tunnel study of flow over an up-hill slope in a complex terrain. Wind and Structures, an International Journal, 2009, 12, 219-237.	0.8	2
195	The effects of topography on local wind-induced pressures of a medium-rise building. Wind and Structures, an International Journal, 2010, 13, 433-449.	0.8	2
196	Experimental study on proximity interference induced vibration of two staggered square prisms in turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220, 104865.	3.9	2
197	Random-amplitude sinusoidal linear acceleration causes greater vestibular modulation of skin sympathetic nerve activity than constant-amplitude acceleration. Experimental Brain Research, 2018, 236, 2619-2626.	1.5	1
198	Aerodynamic analysis of a linear cascade wind turbine. Wind Energy, 2018, 21, 1141-1154.	4.2	1

#	Article	IF	CITATIONS
199	Vestibular modulation of skin sympathetic nerve activity in sopite syndrome induced by low-frequency sinusoidal motion. Journal of Neurophysiology, 2020, 124, 1551-1559.	1.8	1
200	LES analysis of fire source aspect ratio effects on fire-wind enhancement. International Journal of Heat and Fluid Flow, 2021, 89, 108803.	2.4	1
201	Large-eddy simulation of wind-driven flame in the atmospheric boundary layer. International Journal of Thermal Sciences, 2022, 171, 107032.	4.9	1
202	VIBRATION CONTROL OF A FIVE STOREY BENCHMARK BUILDING EXCITED BY EARTHQUAKE USING LIQUID COLUMN VIBRATION ABSORBERS. , 2002, , .		1
203	Unsteady Galloping Force and Response Prediction of a Slender Prism Using a Novel Wind Tunnel Test Technique. DEStech Transactions on Engineering and Technology Research, 2017, , .	0.0	1
204	Effects of Building Lift-Up Design on Pedestrian Wind Environment. , 2013, , .		1
205	Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings. Wind and Structures, an International Journal, 2002, 5, 61-80.	0.8	1
206	Wind-Induced Vibrations of Structures: With Special Reference to Tall Building Aerodynamics. , 2013, , 121-155.		1
207	Wind-induced coupled translational-torsional motion of tall buildings. Wind and Structures, an International Journal, 1998, 1, 43-57.	0.8	1
208	Numerical Simulation of the Effect of Terrain Slope on Fire-Wind Enhancement. Lecture Notes in Civil Engineering, 2020, , 1087-1096.	0.4	1
209	Discussion of session 14 — Wind loading of towers and offshore platforms. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14, 369-372.	3.9	Ο
210	Torsional response and vibration suppression of wind-excited buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43, 2010.	3.9	0
211	Wind-induced response of soil-structure-damper systems. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43, 2070-2071.	3.9	0
212	Behaviour of tall buildings and structures in strong winds: Dynamic properties, response characteristics and vibration mitigation. Australian Journal of Structural Engineering, 2013, 14, .	1.1	0
213	Buiiding (High-Rise Building 2). Wind Engineers JAWE, 2001, 2001, 157-184.	0.1	0
214	Effects of Frequency Ratio on the Aerodynamic and Dynamic Properties of Bridge Decks. , 2006, , .		0
215	Human Perception and Tolerance of Wind-Induced Building Motion. , 2013, , 325-345.		0
216	Effects of Building Configuration on Ventilation Performance of Naturally-Ventilated Building. , 2013,		0

#	Article	IF	CITATIONS
217	Soil-structure interaction and axial force effect in structural vibration. Structural Engineering and Mechanics, 1997, 5, 1-19.	1.0	0