List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/246824/publications.pdf Version: 2024-02-01

	25014	37183
11,614	57	96
citations	h-index	g-index
252	252	13678
docs citations	times ranked	citing authors
	11,614 citations 252 docs citations	11,61457citationsh-index252252docs citations252times ranked

Μλττ Τρλι

#	Article	IF	CITATIONS
1	An Integrated Microfluidic‧ERS Platform Enables Sensitive Phenotyping of Serum Extracellular Vesicles in Early Stage Melanomas. Advanced Functional Materials, 2022, 32, 2010296.	7.8	30
2	Multiplex PCR Design for Scalable Resequencing. Methods in Molecular Biology, 2022, 2392, 143-158.	0.4	2
3	Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy. Materials Advances, 2022, 3, 1459-1471.	2.6	19
4	Opportunities for Early Cancer Detection: The Rise of ctDNA Methylation-Based Pan-Cancer Screening Technologies. Epigenomes, 2022, 6, 6.	0.8	14
5	Molecular locker probe enrichment of gene fusion variants from matched patient liquid biopsy specimens for magneto-bioelectrocatalytic nanosensing. Nanoscale, 2022, 14, 4225-4233.	2.8	4
6	Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Communications Biology, 2022, 5, 135.	2.0	12
7	An Electrochemical and Raman Scattering Dual Detection Biosensor for Rapid Screening and Biomolecular Profiling of Cancer Biomarkers. Chemosensors, 2022, 10, 93.	1.8	5
8	C5b-9 Membrane Attack Complex Formation andÂExtracellular Vesicle Shedding in Barrett's Esophagus and Esophageal Adenocarcinoma. Frontiers in Immunology, 2022, 13, 842023.	2.2	4
9	Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life, 2022, 12, 363.	1.1	1
10	An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae. Nature Communications, 2022, 13, .	5.8	16
11	Nucleic Acid Hybridizationâ€Based Noise Suppression for Ultraselective Multiplexed Amplification of Mutant Variants. Small, 2021, 17, e2006370.	5.2	13
12	Simultaneous BRAFV600E Protein and DNA Aberration Detection in Circulating Melanoma Cells Using an Integrated Multimolecular Sensor. Methods in Molecular Biology, 2021, 2265, 265-276.	0.4	0
13	A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy. Nature Communications, 2021, 12, 1087.	5.8	62
14	Network mapping of primary CD34+ cells by Ampliseq based whole transcriptome targeted resequencing identifies unexplored differentiation regulatory relationships. PLoS ONE, 2021, 16, e0246107.	1.1	0
15	On the Behavior of Nanoparticles beyond the Nanopore Interface. Langmuir, 2021, 37, 4772-4782.	1.6	2
16	Development of EndoScreen Chip, a Microfluidic Pre-Endoscopy Triage Test for Esophageal Adenocarcinoma. Cancers, 2021, 13, 2865.	1.7	4
17	Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types <i>via</i> an Ultrasensitive Chip. ACS Sensors, 2021, 6, 3182-3194.	4.0	22
18	Amplification-Free SARS-CoV-2 Detection Using Nanoyeast-scFv and Ultrasensitive Plasmonic Nanobox-Integrated Nanomixing Microassay. Analytical Chemistry, 2021, 93, 10251-10260.	3.2	19

#	Article	IF	CITATIONS
19	<i>In Situ</i> Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano, 2021, 15, 11231-11243.	7.3	47
20	Generation of Nanoyeast Single-Chain Variable Fragments as High-Avidity Biomaterials for Dengue Virus Detection. ACS Biomaterials Science and Engineering, 2021, 7, 5850-5860.	2.6	3
21	Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains. ACS Sensors, 2021, 6, 4283-4296.	4.0	5
22	Dynamic Monitoring of EMT in CTCs as an Indicator of Cancer Metastasis. Analytical Chemistry, 2021, 93, 16787-16795.	3.2	15
23	Phosphoprotein Biosensors for Monitoring Pathological Protein Structural Changes. Trends in Biotechnology, 2020, 38, 519-531.	4.9	8
24	Stacked Dualâ€Pore Architecture for Deciphering and Manipulating Dynamics of Individual Nanoparticles. Advanced Materials Technologies, 2020, 5, 2000701.	3.0	8
25	Ultrasensitive melanoma biomarker detection using a microchip SERS immunoassay with anisotropic Au–Ag alloy nanoboxes. RSC Advances, 2020, 10, 28778-28785.	1.7	6
26	Nanostructured mesoporous gold electrodes detect protein phosphorylation in cancer with electrochemical signal amplification. Analyst, The, 2020, 145, 6639-6648.	1.7	6
27	Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics, 2020, 168, 112429.	5.3	48
28	Multiomics: The Growing Impact of Micro/Nanomaterialâ€Based Systems in Precision Oncology: Translating "Multiomics―Technologies (Adv. Funct. Mater. 37/2020). Advanced Functional Materials, 2020, 30, 2070248.	7.8	1
29	Direct Enhanced Detection of Multiple Circulating Tumor DNA Variants in Unprocessed Plasma by Magnetic-Assisted Bioelectrocatalytic Cycling. ACS Sensors, 2020, 5, 3217-3225.	4.0	21
30	Configurable Miniaturized 3D Pores for Robust Singleâ€Nanoparticle Analysis. Small Structures, 2020, 1, 2000011.	6.9	6
31	Configurable Miniaturized 3D Pores for Robust Singleâ€Nanoparticle Analysis. Small Structures, 2020, 1, 2070006.	6.9	6
32	Regulation of Canonical Oncogenic Signaling Pathways in Cancer via DNA Methylation. Cancers, 2020, 12, 3199.	1.7	13
33	Methylation dependent gold adsorption behaviour identifies cancer derived extracellular vesicular DNA. Nanoscale Horizons, 2020, 5, 1317-1323.	4.1	8
34	Comprehensive evaluation of targeted multiplex bisulphite PCR sequencing for validation of DNA methylation biomarker panels. Clinical Epigenetics, 2020, 12, 90.	1.8	16
35	Surface-Enhanced Raman Spectroscopy for Cancer Immunotherapy Applications: Opportunities, Challenges, and Current Progress in Nanomaterial Strategies. Nanomaterials, 2020, 10, 1145.	1.9	21
36	Tracking Drugâ€Induced Epithelial–Mesenchymal Transition in Breast Cancer by a Microfluidic Surfaceâ€Enhanced Raman Spectroscopy Immunoassay. Small, 2020, 16, e1905614.	5.2	33

#	Article	IF	CITATIONS
37	The Growing Impact of Micro/Nanomaterialâ€Based Systems in Precision Oncology: Translating "Multiomics―Technologies. Advanced Functional Materials, 2020, 30, 1909306.	7.8	25
38	Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Science Advances, 2020, 6, eaax3223.	4.7	97
39	A material odyssey for 3D nano/microstructures: two photon polymerization based nanolithography in bioapplications. Applied Materials Today, 2020, 19, 100635.	2.3	55
40	Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems. Accounts of Chemical Research, 2019, 52, 2113-2123.	7.6	32
41	Native MicroRNA Targets Trigger Selfâ€Assembly of Nanozymeâ€Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonicâ€Activated Cancer Detection. Small, 2019, 15, e1904689.	5.2	53
42	Engineering Stateâ€ofâ€ŧheâ€Art Plasmonic Nanomaterials for SERSâ€Based Clinical Liquid Biopsy Applications. Advanced Science, 2019, 6, 1900730.	5.6	112
43	An integrated multi-molecular sensor for simultaneous BRAFV600E protein and DNA single point mutation detection in circulating tumour cells. Lab on A Chip, 2019, 19, 738-748.	3.1	16
44	PrimerROC: accurate condition-independent dimer prediction using ROC analysis. Scientific Reports, 2019, 9, 209.	1.6	17
45	DNA Methylation-Based Point-of-Care Cancer Detection: Challenges and Possibilities. Trends in Molecular Medicine, 2019, 25, 955-966.	3.5	30
46	Watching SERS glow for multiplex biomolecular analysis in the clinic: A review. Applied Materials Today, 2019, 15, 431-444.	2.3	49
47	Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 2019, 16, 302-317.	1.9	86
48	Label-free detection of exosomes using a surface plasmon resonance biosensor. Analytical and Bioanalytical Chemistry, 2019, 411, 1311-1318.	1.9	70
49	Reading Conformational Changes in Proteins with a New Colloidal-Based Interfacial Biosensing System. ACS Applied Materials & Interfaces, 2019, 11, 11125-11135.	4.0	3
50	Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst, The, 2019, 144, 6914-6921.	1.7	18
51	Retooling phage display with electrohydrodynamic nanomixing and nanopore sequencing. Lab on A Chip, 2019, 19, 4083-4092.	3.1	8
52	A microfluidic-SERSplatform for isolation and immuno-phenotyping of antigen specific T-cells. Sensors and Actuators B: Chemical, 2019, 284, 281-288.	4.0	10
53	A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems. Journal of Colloid and Interface Science, 2019, 537, 536-546.	5.0	20
54	Two-Photon Nanolithography of Tailored Hollow three-dimensional Microdevices for Biosystems. ACS Omega, 2019, 4, 1401-1409.	1.6	28

#	Article	IF	CITATIONS
55	Optimizing Size Exclusion Chromatography for Extracellular Vesicle Enrichment and Proteomic Analysis from Clinically Relevant Samples. Proteomics, 2019, 19, e1800156.	1.3	52
56	A SERS microfluidic platform for targeting multiple soluble immune checkpoints. Biosensors and Bioelectronics, 2019, 126, 178-186.	5.3	48
57	Tracking antigen specific T-cells: Technological advancement and limitations. Biotechnology Advances, 2019, 37, 145-153.	6.0	7
58	Interfacial nano-mixing in a miniaturised platform enables signal enhancement and <i>in situ</i> detection of cancer biomarkers. Nanoscale, 2018, 10, 10884-10890.	2.8	18
59	Characterising the phenotypic evolution of circulating tumour cells during treatment. Nature Communications, 2018, 9, 1482.	5.8	86
60	Maskless 3D Ablation of Precise Microhole Structures in Plastics Using Femtosecond Laser Pulses. ACS Applied Materials & Interfaces, 2018, 10, 4315-4323.	4.0	28
61	Amplificationâ€Free Multiâ€RNAâ€Type Profiling for Cancer Risk Stratification via Alternating Current Electrohydrodynamic Nanomixing. Small, 2018, 14, e1704025.	5.2	22
62	DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species. Nano Research, 2018, 11, 940-952.	5.8	32
63	Geometric optimisation of electrohydrodynamic fluid flows for enhanced biosensing. Microchemical Journal, 2018, 137, 231-237.	2.3	11
64	A Sample-to-Targeted Gene Analysis Biochip for Nanofluidic Manipulation of Solid-Phase Circulating Tumor Nucleic Acid Amplification in Liquid Biopsies. ACS Sensors, 2018, 3, 2597-2603.	4.0	44
65	Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nature Communications, 2018, 9, 4915.	5.8	135
66	"Mix-to-Go―Silver Colloidal Strategy for Prostate Cancer Molecular Profiling and Risk Prediction. Analytical Chemistry, 2018, 90, 12698-12705.	3.2	13
67	Facile One-Pot Synthesis of Nanodot-Decorated Gold–Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. ACS Applied Materials & Interfaces, 2018, 10, 32526-32535.	4.0	45
68	Parallel profiling of cancer cells and proteins using a graphene oxide functionalized ac-EHD SERS immunoassay. Nanoscale, 2018, 10, 18482-18491.	2.8	29
69	An exosomal- and interfacial-biosensing based strategy for remote monitoring of aberrantly phosphorylated proteins in lung cancer cells. Biomaterials Science, 2018, 6, 2336-2341.	2.6	17
70	Design and Clinical Verification of Surface-Enhanced Raman Spectroscopy Diagnostic Technology for Individual Cancer Risk Prediction. ACS Nano, 2018, 12, 8362-8371.	7.3	66
71	Adjustable Fluidic Nanomixing: Amplificationâ€Free Multiâ€RNAâ€Type Profiling for Cancer Risk Stratification via Alternating Current Electrohydrodynamic Nanomixing (Small 17/2018). Small, 2018, 14, 1870075.	5.2	2
72	Multiplexed SERS Detection of Soluble Cancer Protein Biomarkers with Gold–Silver Alloy Nanoboxes and Nanoyeast Single-Chain Variable Fragments. Analytical Chemistry, 2018, 90, 10377-10384.	3.2	59

#	Article	IF	CITATIONS
73	PrimerSuite: A High-Throughput Web-Based Primer Design Program for Multiplex Bisulfite PCR. Scientific Reports, 2017, 7, 41328.	1.6	36
74	A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale, 2017, 9, 3496-3503.	2.8	74
75	Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes. Scientific Reports, 2017, 7, 38896.	1.6	121
76	Evaluation of Different Oligonucleotide Base Substitutions at CpG Binding sites in Multiplex Bisulfite-PCR sequencing. Scientific Reports, 2017, 7, 45096.	1.6	0
77	Electrohydrodynamicâ€Induced SERS Immunoassay for Extensive Multiplexed Biomarker Sensing. Small, 2017, 13, 1602902.	5.2	79
78	Detection of aberrant protein phosphorylation in cancer using direct gold-protein affinity interactions. Biosensors and Bioelectronics, 2017, 91, 8-14.	5.3	15
79	Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. Analyst, The, 2017, 142, 4788-4793.	1.7	47
80	Purification Protocols for Extracellular Vesicles. Methods in Molecular Biology, 2017, 1660, 111-130.	0.4	77
81	Isothermal Point Mutation Detection: Toward a First-Pass Screening Strategy for Multidrug-Resistant Tuberculosis. Analytical Chemistry, 2017, 89, 9017-9022.	3.2	27
82	PARTICLE triplexes cluster in the tumor suppressor WWOX and may extend throughout the human genome. Scientific Reports, 2017, 7, 7163.	1.6	27
83	A multiplex microplatform for the detection of multiple DNA methylation events using gold–DNA affinity. Analyst, The, 2017, 142, 3573-3578.	1.7	10
84	Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. Lab on A Chip, 2017, 17, 3200-3220.	3.1	55
85	High-speed biosensing strategy for non-invasive profiling of multiple cancer fusion genes in urine. Biosensors and Bioelectronics, 2017, 89, 715-720.	5.3	16
86	Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biology, 2017, 15, e2003916.	2.6	190
87	Colorimetric <i>TMPRSS2-ERG</i> Gene Fusion Detection in Prostate Cancer Urinary Samples via Recombinase Polymerase Amplification. Theranostics, 2016, 6, 1415-1424.	4.6	38
88	Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Theranostics, 2016, 6, 1506-1513.	4.6	106
89	Cancer Therapy: Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine (Small 45/2016). Small, 2016, 12, 6302-6302.	5.2	0
90	Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Scientific Reports, 2016, 6, 37837.	1.6	44

#	Article	IF	CITATIONS
91	A simple, rapid, low-cost technique for naked-eye detection of urine-isolated TMPRSS2:ERG gene fusion RNA. Scientific Reports, 2016, 6, 30722.	1.6	21
92	Biosensing made easy with PEC-targeted bi-specific antibodies. Chemical Communications, 2016, 52, 5730-5733.	2.2	11
93	Simple Isothermal Strategy for Multiplexed, Rapid, Sensitive, and Accurate miRNA Detection. ACS Sensors, 2016, 1, 670-675.	4.0	52
94	Toward Precision Medicine: A Cancer Molecular Subtyping Nano‣trategy for RNA Biomarkers in Tumor and Urine. Small, 2016, 12, 6233-6242.	5.2	52
95	Rapid Molecular Profiling of Myeloproliferative Neoplasms Using Targeted Exon Resequencing of 86 Genes Involved in JAK-STAT Signaling and Epigenetic Regulation. Journal of Molecular Diagnostics, 2016, 18, 707-718.	1.2	18
96	Rapid and Sensitive Fusion Gene Detection in Prostate Cancer Urinary Specimens by Label-Free Surface-Enhanced Raman Scattering. Journal of Biomedical Nanotechnology, 2016, 12, 1798-1805.	0.5	15
97	A DNA Circuit for IsomiR Detection. ChemBioChem, 2016, 17, 2172-2178.	1.3	1
98	Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens. Analytical Chemistry, 2016, 88, 8074-8081.	3.2	87
99	Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces. Scientific Reports, 2016, 6, 19709.	1.6	8
100	Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS Applied Materials & Interfaces, 2016, 8, 30649-30664.	4.0	16
101	Real time and label free profiling of clinically relevant exosomes. Scientific Reports, 2016, 6, 30460.	1.6	124
102	Amplification-Free Detection of Gene Fusions in Prostate Cancer Urinary Samples Using mRNA–Gold Affinity Interactions. Analytical Chemistry, 2016, 88, 6781-6788.	3.2	65
103	Accurate and sensitive total genomic DNA methylation analysis from sub-nanogram input with embedded SERS nanotags. Chemical Communications, 2016, 52, 3560-3563.	2.2	36
104	Naked-Eye Colorimetric and Electrochemical Detection of <i>Mycobacterium tuberculosis</i> —toward Rapid Screening for Active Case Finding. ACS Sensors, 2016, 1, 173-178.	4.0	49
105	MethPat: a tool for the analysis and visualisation of complex methylation patterns obtained by massively parallel sequencing. BMC Bioinformatics, 2016, 17, 98.	1.2	22
106	Poly(A) Extensions of miRNAs for Amplification-Free Electrochemical Detection on Screen-Printed Gold Electrodes. Analytical Chemistry, 2016, 88, 2000-2005.	3.2	128
107	Electric Field Induced Isolation, Release, and Recapture of Tumor Cells. ACS Sensors, 2016, 1, 399-405.	4.0	14
108	Phase II Randomized Preoperative Window-of-Opportunity Study of the PI3K Inhibitor Pictilisib Plus Anastrozole Compared With Anastrozole Alone in Patients With Estrogen Receptor–Positive Breast Cancer. Journal of Clinical Oncology, 2016, 34, 1987-1994.	0.8	84

#	Article	IF	CITATIONS
109	Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions. Analyst, The, 2016, 141, 2356-2361.	1.7	13
110	Rapid DNA detection of Mycobacterium tuberculosis-towards single cell sensitivity in point-of-care diagnosis. Scientific Reports, 2015, 5, .	1.6	35
111	Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces. Biomicrofluidics, 2015, 9, 061501.	1.2	25
112	A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation. Scientific Reports, 2015, 5, 15028.	1.6	32
113	Enhancing Protein Capture Using a Combination of Nanoyeast Single-Chain Fragment Affinity Reagents and Alternating Current Electrohydrodynamic Forces. Analytical Chemistry, 2015, 87, 11673-11681.	3.2	12
114	Exemplary multiplex bisulfite amplicon data used to demonstrate the utility of Methpat. GigaScience, 2015, 4, 55.	3.3	3
115	Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction. Chemical Communications, 2015, 51, 10953-10956.	2.2	53
116	Enabling Rapid and Specific Surface-Enhanced Raman Scattering Immunoassay Using Nanoscaled Surface Shear Forces. ACS Nano, 2015, 9, 6354-6362.	7.3	93
117	Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nature Communications, 2015, 6, 5899.	5.8	162
118	Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Scientific Reports, 2015, 5, 7639.	1.6	226
119	Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chemical Communications, 2015, 51, 5828-5831.	2.2	50
120	Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability. Langmuir, 2015, 31, 6577-6587.	1.6	96
121	DNA–bare gold affinity interactions: mechanism and applications in biosensing. Analytical Methods, 2015, 7, 7042-7054.	1.3	131
122	DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer. Nature Communications, 2015, 6, 7758.	5.8	105
123	PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Reports, 2015, 11, 474-485.	2.9	189
124	Multiplex bisulfite PCR resequencing of clinical FFPE DNA. Clinical Epigenetics, 2015, 7, 28.	1.8	26
125	Structural Characterization of Nanoyeast Single-Chain Fragment Variable Affinity Reagents. Journal of Physical Chemistry C, 2015, 119, 12674-12680.	1.5	6
126	A Multiplexed Device Based on Tunable Nanoshearing for Specific Detection of Multiple Protein Biomarkers in Serum. Scientific Reports, 2015, 5, 9756.	1.6	22

#	Article	IF	CITATIONS
127	Rapid, Single-Cell Electrochemical Detection of <i>Mycobacterium tuberculosis</i> Using Colloidal Gold Nanoparticles. Analytical Chemistry, 2015, 87, 10613-10618.	3.2	49
128	Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs. Clinical Epigenetics, 2015, 7, 65.	1.8	41
129	DNA Ligase-Based Strategy for Quantifying Heterogeneous DNA Methylation without Sequencing. Clinical Chemistry, 2015, 61, 163-171.	1.5	24
130	Alternating Current Electrohydrodynamics Induced Nanoshearing and Fluid Micromixing for Specific Capture of Cancer Cells. Chemistry - A European Journal, 2014, 20, 3724-3729.	1.7	11
131	Detecting Exosomes Specifically: A Multiplexed Device Based on Alternating Current Electrohydrodynamic Induced <i>Nanoshearing</i> . Analytical Chemistry, 2014, 86, 11125-11132.	3.2	220
132	Nano-yeast–scFv probes on screen-printed gold electrodes for detection of Entamoeba histolytica antigens in a biological matrix. Biosensors and Bioelectronics, 2014, 55, 417-422.	5.3	36
133	Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation. Chemical Communications, 2014, 50, 3585-3588.	2.2	78
134	Tuneable surface shear forces to physically displace nonspecific molecules in protein biomarker detection. Biosensors and Bioelectronics, 2014, 61, 184-191.	5.3	11
135	Measuring whole genome methylation via oxygen channelling chemistry. Chemical Communications, 2014, 50, 10894-10896.	2.2	4
136	Electrohydrodynamic removal of non-specific colloidal adsorption at electrode interfaces. Chemical Communications, 2014, 50, 4813-4815.	2.2	8
137	eMethylsorb: electrochemical quantification of DNA methylation at CpG resolution using DNA–gold affinity interactions. Chemical Communications, 2014, 50, 13153-13156.	2.2	68
138	Tunable " <i>Nano-Shearing</i> ― A Physical Mechanism to Displace Nonspecific Cell Adhesion During Rare Cell Detection. Analytical Chemistry, 2014, 86, 2042-2049.	3.2	22
139	Evolution made easy. Nature Chemistry, 2014, 6, 756-757.	6.6	3
140	eMethylsorb: rapid quantification of DNA methylation in cancer cells on screen-printed gold electrodes. Analyst, The, 2014, 139, 6178-6184.	1.7	51
141	Methylsorb: A Simple Method for Quantifying DNA Methylation Using DNA–Gold Affinity Interactions. Analytical Chemistry, 2014, 86, 10179-10185.	3.2	59
142	Duplex Microfluidic SERS Detection of Pathogen Antigens with Nanoyeast Single-Chain Variable Fragments. Analytical Chemistry, 2014, 86, 9930-9938.	3.2	60
143	Electrochemical detection of glycan and protein epitopes of glycoproteins in serum. Analyst, The, 2014, 139, 5970-5976.	1.7	11
144	Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosensors and Bioelectronics, 2014, 56, 278-285.	5.3	41

#	Article	IF	CITATIONS
145	Molecular Nanoshearing: An Innovative Approach to Shear off Molecules with AC-Induced Nanoscopic Fluid Flow. Scientific Reports, 2014, 4, 3716.	1.6	31
146	Molecular Inversion Probe: A New Tool for Highly Specific Detection of Plant Pathogens. PLoS ONE, 2014, 9, e111182.	1.1	9
147	μ-eLCR: a microfabricated device for electrochemical detection of DNA base changes in breast cancer cell lines. Lab on A Chip, 2013, 13, 4385.	3.1	17
148	"Drill and fill―lithography for controlled fabrication of 3D platinum electrodes. Sensors and Actuators B: Chemical, 2013, 185, 543-547.	4.0	4
149	Label-free electrochemical detection of an Entamoeba histolytica antigen using cell-free yeast-scFv probes. Chemical Communications, 2013, 49, 1551.	2.2	55
150	A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. Journal of Colloid and Interface Science, 2013, 405, 322-330.	5.0	298
151	Accurate Detection of Methylated Cytosine in Complex Methylation Landscapes. Analytical Chemistry, 2013, 85, 6575-6579.	3.2	2
152	"Drill and fill" lithography: fabrication of platinum electrodes and their use in label-free immunosensing. RSC Advances, 2013, 3, 4189.	1.7	5
153	Tuning Particle Velocity and Measurement Sensitivity by Changing Pore Sensor Dimensions. Chemistry Letters, 2012, 41, 1134-1136.	0.7	17
154	eLCR: electrochemical detection of single DNA base changes via Ligase Chain Reaction. Chemical Communications, 2012, 48, 12014.	2.2	38
155	Femtomolar detection of a cancer biomarker protein in serum with ultralow background current by anodic stripping voltammetry. Chemical Communications, 2012, 48, 6411.	2.2	24
156	Modeling Elastic Pore Sensors for Quantitative Single Particle Sizing. Journal of Physical Chemistry C, 2012, 116, 8554-8561.	1.5	39
157	An electrochemical immunosensor to minimize the nonspecific adsorption and to improve sensitivity of protein assays in human serum. Biosensors and Bioelectronics, 2012, 38, 132-137.	5.3	40
158	Simultaneous Size and ζ-Potential Measurements of Individual Nanoparticles in Dispersion Using Size-Tunable Pore Sensors. ACS Nano, 2012, 6, 6990-6997.	7.3	172
159	Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosensors and Bioelectronics, 2012, 35, 251-257.	5.3	73
160	Development of encoded particle-polymer arrays for the accelerated screening of antifouling layers. Chemical Communications, 2011, 47, 9687.	2.2	5
161	Bisulfite-free analysis of 5MeC-binding proteins and locus-specific methylation density using a microparticle-based flow cytometry assay. Analyst, The, 2011, 136, 688-691.	1.7	11
162	Improvement of the wet tensile properties of nanostructured hydroxyapatite and chitosan biocomposite films through hydrophobic modification. Journal of Materials Chemistry, 2011, 21, 2330-2337.	6.7	30

#	Article	IF	CITATIONS
163	Epiallele Quantification Using Molecular Inversion Probes. Analytical Chemistry, 2011, 83, 2631-2637.	3.2	10
164	Sensitive Quantification of Somatic Mutations Using Molecular Inversion Probes. Analytical Chemistry, 2011, 83, 8215-8221.	3.2	6
165	Protein resistance of dextran and dextran-poly(ethylene glycol) copolymer films. Biofouling, 2011, 27, 497-503.	0.8	8
166	Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Analytical Chemistry, 2011, 83, 3499-3506.	3.2	256
167	Effect of Poly(ethylene glycol) (PEG) Spacers on the Conformational Properties of Small Peptides: A Molecular Dynamics Study. Langmuir, 2011, 27, 296-303.	1.6	35
168	Rapid DNA detection by beacon-assisted detection amplification. Nature Protocols, 2011, 6, 772-778.	5.5	34
169	Advances in resistive pulse sensors: Devices bridging the void between molecular and microscopic detection. Nano Today, 2011, 6, 531-545.	6.2	154
170	Multiplatform comparison of multiplexed bead arrays using HPV genotyping as a test case. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 713-719.	1.1	2
171	Characterisation of amine functionalised poly(3-hydroxybuturate-co-3-hydroxyvalerate) surfaces. Polymer, 2011, 52, 3251-3258.	1.8	28
172	Tissue transplantation by stealth—Coherent alginate microcapsules for immunoisolation. Biochemical Engineering Journal, 2010, 48, 337-347.	1.8	30
173	Isothermal Detection of DNA by Beaconâ€Assisted Detection Amplification. Angewandte Chemie - International Edition, 2010, 49, 2720-2723.	7.2	145
174	Quantitative considerations for suspension array assays. Journal of Biotechnology, 2010, 145, 17-22.	1.9	5
175	Tunable Nano/Micropores for Particle Detection and Discrimination: Scanning Ion Occlusion Spectroscopy. Small, 2010, 6, 2653-2658.	5.2	110
176	Use of tunable nanopore blockade rates to investigate colloidal dispersions. Journal of Physics Condensed Matter, 2010, 22, 454116.	0.7	88
177	Considerations of Solid-Phase DNA Amplification. Bioconjugate Chemistry, 2010, 21, 690-695.	1.8	28
178	Biomimetic synthesis and tensile properties of nanostructured high volume fraction hydroxyapatite and chitosan biocomposite films. Journal of Materials Chemistry, 2010, 20, 381-389.	6.7	30
179	â€~On-the-fly' optical encoding of combinatorial peptide libraries for profiling of protease specificity. Molecular BioSystems, 2010, 6, 225-233	2.9	19
180	Improving the Signal-to-Noise Performance of Molecular Diagnostics with PEG-Lysine Copolymer Dendrons. Biomacromolecules, 2009, 10, 360-365.	2.6	9

#	Article	IF	CITATIONS
181	Assembly of multilayer PSS/PAH membrane on coherent alginate/PLO microcapsule for longâ€ŧerm graft transplantation. Journal of Biomedical Materials Research - Part A, 2009, 88A, 226-237.	2.1	12
182	Synthesis and Application of FRET Nanoparticles in the Profiling of a Protease. Small, 2009, 5, 2053-2056.	5.2	15
183	The fabrication and characterization of biodegradable HA/PHBV nanoparticle–polymer composite scaffolds. Acta Biomaterialia, 2009, 5, 2657-2667.	4.1	99
184	Antifouling Surface Layers for Improved Signal-to-Noise of Particle-Based Immunoassays. Langmuir, 2009, 25, 13510-13515.	1.6	23
185	An organic matrix-mediated processing methodology to fabricate hydroxyapatite based nanostructured biocomposites. Nanoscale, 2009, 1, 229.	2.8	13
186	Modification and optimization of organosilica microspheres for peptide synthesis and microsphere-based immunoassays. Molecular BioSystems, 2009, 5, 826.	2.9	7
187	Development of a multiplexed bead-based assay for detection of DNA methylation in cancer-related genes. Molecular BioSystems, 2009, 5, 262-268.	2.9	13
188	Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomedical Materials (Bristol), 2009, 4, 015003.	1.7	31
189	Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomedical Materials (Bristol), 2009, 4, 015003.	1.7	4
190	Quantitative data analysis methods for beadâ€based DNA hybridization assays using generic flow cytometry platforms. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 467-476.	1.1	6
191	A dual-purpose synthetic colloidal platform for protease mapping: substrate profiling for Dengue and West Nile virus proteases. Analytical Biochemistry, 2008, 376, 151-153.	1.1	14
192	Analysis of the Phase Behavior of the Aqueous Poly(ethylene glycol)-Ficoll System. Biotechnology Progress, 2008, 19, 1269-1273.	1.3	7
193	Particle-by-particle quantification of protein adsorption onto poly(ethylene glycol) grafted surfaces. Biofouling, 2008, 24, 267-273.	0.8	13
194	A structural study of hybrid organosilica materials for colloid-based DNA biosensors. Journal of Materials Chemistry, 2008, 18, 523-529.	6.7	23
195	Bionanohydroxyapatite/Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Composites with Improved Particle Dispersion and Superior Mechanical Properties. Chemistry of Materials, 2008, 20, 2802-2808.	3.2	37
196	Flow cytometric detection of proteolysis in peptide libraries synthesised on optically encoded supports. Molecular BioSystems, 2008, 4, 774.	2.9	7
197	Profiling Proteinâ^'Surface Interactions of Multicomponent Suspensions via Flow Cytometry. Langmuir, 2008, 24, 1204-1211.	1.6	7
198	Combining Chemistry and Biology To Create Colloidally Stable Bionanohydroxyapatite Particles: Toward Load-Bearing Bone Applications. Langmuir, 2008, 24, 7744-7749.	1.6	17

#	Article	IF	CITATIONS
199	Synthesis and characterization of alginate/poly-L-ornithine/alginate microcapsules for local immunosuppression. Journal of Microencapsulation, 2008, 25, 387-398.	1.2	27
200	Toward colloid-based biosensors for SNP genotyping and personalised medicine applications. International Journal of Nanotechnology, 2008, 5, 299.	0.1	1
201	Optically Encoded Particles and Their Applications in Multiplexed Biomedical Assays. Australian Journal of Chemistry, 2007, 60, 343.	0.5	18
202	Refractometry of organosilica microspheres. Applied Optics, 2007, 46, 1554.	2.1	10
203	Investigations into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface properties causing delayed osteoblast growth. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1101-1123.	1.9	20
204	Characterization and Surface Properties of Amino-Acid-Modified Carbonate-Containing Hydroxyapatite Particles. Langmuir, 2007, 23, 12233-12242.	1.6	62
205	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration:In vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. Journal of Biomedical Materials Research - Part A, 2007, 82A, 599-610.	2.1	73
206	Fluorescent organosilica micro- and nanoparticles with controllable size. Journal of Colloid and Interface Science, 2007, 310, 144-150.	5.0	48
207	Organosilica Particles for DNA Screening Applications. , 2006, , .		0
208	A Mechanism for Forming Large Fluorescent Organo-Silica Particles:  Potential Supports for Combinatorial Synthesis. Chemistry of Materials, 2006, 18, 6163-6169.	3.2	18
209	Quantitative Analysis and Characterization of Biofunctionalized Fluorescent Silica Particles. Langmuir, 2006, 22, 2731-2737.	1.6	64
210	Introducing Amine Functionalities on a Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Surface:Â Comparing the Use of Ammonia Plasma Treatment and Ethylenediamine Aminolysis. Biomacromolecules, 2006, 7, 427-434.	2.6	68
211	Tailoring Surface Properties To Build Colloidal Diagnostic Devices:Â Controlling Interparticle Associations. Langmuir, 2006, 22, 497-505.	1.6	25
212	Reduction of the in vitro pro-inflammatory response by macrophages to poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biomaterials, 2006, 27, 4715-4725.	5.7	32
213	Multiplexed microsphere diagnostic tools in gene expression applications: factors and futures. International Journal of Nanomedicine, 2006, 1, 195-201.	3.3	5
214	Polymeric Grafting of Acrylic Acid onto Poly(3-hydroxybutyrate-co-3-hydroxyvalerate):Â Surface Functionalization for Tissue Engineering Applications. Biomacromolecules, 2005, 6, 2197-2203.	2.6	103
215	Emulsion strategies in the microencapsulation of cells: Pathways to thin coherent membranes. Biotechnology and Bioengineering, 2005, 92, 45-53.	1.7	29
216	Porous functionalised silica particles: a potential platform for biomolecular screening. Chemical Communications, 2005, , 848.	2.2	54

#	Article	IF	CITATIONS
217	Functionalized Organosilica Microspheres via a Novel Emulsion-Based Route. Langmuir, 2005, 21, 9733-9740.	1.6	92
218	Biomolecular screening with novel organosilica microspheres. Chemical Communications, 2005, , 4783.	2.2	30
219	Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) Supports in Vitro Osteogenesis. Tissue Engineering, 2005, 11, 1281-1295.	4.9	55
220	Postsynthesis Stabilization of Free-standing Mesoporous Silica Films. Langmuir, 2004, 20, 2908-2914.	1.6	13
221	Mesostructured Dye-Doped Titanium Dioxide for Micro-Optoelectronic Applications. ChemPhysChem, 2003, 4, 595-603.	1.0	85
222	Synthesis of Optically Complex Core–Shell Colloidal Suspensions: Pathways to Multiplexed Biological Screening. Advanced Functional Materials, 2003, 13, 887-896.	7.8	46
223	Quantitative prediction of phase diagrams for polymer partitioning in aqueous two-phase systems. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 437-443.	2.4	3
224	Micropatterned lead zirconium titanate thin films. Journal of Materials Research, 2003, 18, 1259-1265.	1.2	18
225	Advances in Encoding of Colloids for Combinatorial Libraries: Applications in Genomics, Proteomics and Drug Discovery. Current Pharmaceutical Biotechnology, 2003, 4, 439-449.	0.9	2
226	Dimer-to-Monomer Transformation of Rhodamine 6G in Aqueous PEOâ^'PPOâ^'PEO Block Copolymer Solutions. Macromolecules, 2002, 35, 2063-2070.	2.2	49
227	Optical barcoding of colloidal suspensions: applications in genomics, proteomics and drug discovery. Chemical Communications, 2002, , 1435-1441.	2.2	74
228	Novel miniaturized systems in high-throughput screening. Trends in Biotechnology, 2002, 20, 167-173.	4.9	85
229	Essay: Chemistry for the Future at the IUPAC Chemistry Congress. Australian Journal of Chemistry, 2001, 54, 549.	0.5	0
230	Current Chemistry: Nanostructured Biomaterials: a Novel Approach to Artificial Bone Implants. Australian Journal of Chemistry, 2001, 54, 621.	0.5	18
231	Optical encoding of microbeads for gene screening: alternatives to microarrays. Drug Discovery Today, 2001, 6, 19-26.	3.2	49
232	Multi-Fluorescent Silica Colloids for Encoding Large Combinatorial Libraries. Australian Journal of Chemistry, 2001, 54, 649.	0.5	13
233	Toward Larger Chemical Libraries:Â Encoding with Fluorescent Colloids in Combinatorial Chemistry. Journal of the American Chemical Society, 2000, 122, 2138-2139.	6.6	143
234	Encoding Combinatorial Libraries:Â A Novel Application of Fluorescent Silica Colloids. Langmuir, 2000, 16, 9709-9715.	1.6	50

#	Article	IF	CITATIONS
235	Mesoporous Silicate Film Growth at the Airâ^Water InterfaceDirect Observation by X-ray Reflectivity. Langmuir, 1997, 13, 6363-6365.	1.6	63
236	Microscopic patterning of orientated mesoscopic silica through guided growth. Nature, 1997, 390, 674-676.	13.7	393
237	Field-Induced Layering of Colloidal Crystals. Science, 1996, 272, 706-709.	6.0	620
238	Biomimetic Pathways for Assembling Inorganic Thin Films. Science, 1996, 273, 892-898.	6.0	740
239	Electric-field-induced pattern formation in colloidal dispersions. Nature, 1995, 374, 437-439.	13.7	100
240	Pattern Formation in Nonaqueous Colloidal Dispersions via Electrohydrodynamic Flow. Langmuir, 1995, 11, 4665-4672.	1.6	36
241	Evanescent wave spectroscopy: application to the study of the spatial distribution of charged groups on an adsorbed polyelectrolyte at the silica/water interface. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1251.	1.7	8
242	Investigation by evanescent waves of the charge and conformation of an adsorbed polyelectrolyte at the silica/aqueous solution interface. Langmuir, 1992, 8, 2349-2353.	1.6	10
243	An ellipsometric study of thin films on silica plates formed by alkylchlorosilylation reagents. Journal of Colloid and Interface Science, 1992, 148, 182-189.	5.0	77
244	The Entry of Free Radicals Into Polystyrene Latex Particles. Australian Journal of Chemistry, 1988, 41, 1799.	0.5	32
245	Colloids for Encoding Chemical Libraries: Applications in Biological Screening. , 0, , 507-560.		2
246	A Tâ€Junction Dual Nanopore for Single Nanoparticle Analysis. Advanced Engineering Materials, 0, , 2101015.	1.6	4