Chao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468180/publications.pdf

Version: 2024-02-01

		168829	206121
56	2,749 citations	31	51
papers	citations	h-index	g-index
5.6	5.6	5.6	2065
56	56	56	3065
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Multi-thiol-supported dicarboxylate-based metal–organic framework with excellent performance for lithium-ion battery. Chemical Engineering Journal, 2022, 431, 133234.	6.6	23
2	Stable electronic structure related with Mn4+Oâ^• coupling determines the anomalous nonhysteretic behavior in Na2Mn3O7. Energy Storage Materials, 2022, 48, 290-296.	9.5	16
3	Coincident formation of trapped molecular O2 in oxygen-redox-active archetypical Li 3d oxide cathodes unveiled by EPR spectroscopy. Energy Storage Materials, 2022, 50, 55-62.	9.5	11
4	Tailoring Anionic Redox Activity in a P2-Type Sodium Layered Oxide Cathode via Cu Substitution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28738-28747.	4.0	18
5	Triggering and Stabilizing Oxygen Redox Chemistry in Layered Li[Na _{1/3} Ru _{2/3}]O ₂ Enabled by Stable Li–O–Na Configuration. ACS Energy Letters, 2022, 7, 2349-2356.	8.8	18
6	Operando EPR and EPR Imaging Study on a NaCrO ₂ Cathode: Electronic Property and Structural Degradation with Cr Dissolution. Journal of Physical Chemistry Letters, 2021, 12, 781-786.	2.1	19
7	NMR Evidence for the Multielectron Reaction Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode and the Impact of Polyanion Site Substitution. Journal of Physical Chemistry C, 2021, 125, 15200-15209.	1.5	11
8	Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR. Energy Storage Materials, 2021, 39, 60-69.	9.5	35
9	What Triggers the Voltage Hysteresis Variation beyond the First Cycle in Li-Rich 3d Layered Oxides with Reversible Cation Migration?. Journal of Physical Chemistry Letters, 2021, 12, 8740-8748.	2.1	21
10	Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 360-369.	4.0	38
11	Coexistence of (O ₂) ^{<i>n</i>)a^3} and Trapped Molecular O ₂ as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. Journal of the American Chemical Society, 2021, 143, 18652-18664.	6.6	55
12	Na ₃ V ₂ (PO ₄) ₃ Revisited: A High-Resolution Solid-State NMR Study. Journal of Physical Chemistry C, 2021, 125, 24060-24066.	1.5	6
13	A multifunctional manipulation to stabilize oxygen redox and phase transition in 4.6 V high-voltage LiCoO2 with sXAS and EPR studies. Journal of Power Sources, 2021, 516, 230661.	4.0	17
14	Mapping the Distribution and the Microstructural Dimensions of Metallic Lithium Deposits in an Anode-Free Battery by In Situ EPR Imaging. Chemistry of Materials, 2021, 33, 8223-8234.	3.2	24
15	MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27234-27251.	5.2	33
16	Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li _{1.2} Ti _{0.4} Mn _{0.4} O ₂ cathode material revealed by solid-state NMR and EPR. Journal of Materials Chemistry A, 2020, 8, 16515-16526.	5.2	37
17	A green ligand-based copper–organic framework: a high-capacity lithium storage material and insight into its abnormal capacity-increase behavior. New Journal of Chemistry, 2020, 44, 17899-17905.	1.4	10
18	Deciphering the Origin of High Electrochemical Performance in a Novel Ti-Substituted P2/O3 Biphasic Cathode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41485-41494.	4.0	31

#	Article	IF	CITATIONS
19	Pristine MOF and COF materials for advanced batteries. Energy Storage Materials, 2020, 31, 115-134.	9.5	149
20	High Ethylene Selectivity in Methanolâ€toâ€Olefin (MTO) Reaction over MORâ€Zeolite Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 6258-6262.	7.2	46
21	High Ethylene Selectivity in Methanolâ€toâ€Olefin (MTO) Reaction over MORâ€Zeolite Nanosheets. Angewandte Chemie, 2020, 132, 6317-6321.	1.6	33
22	Unraveling the Critical Role of Ti Substitution in P ₂ -Na _{<i>>x</i>} Li _{<i>y</i>} Mn _{1â€"<i>y</i>} O ₂ Cathodes for Highly Reversible Oxygen Redox Chemistry. Chemistry of Materials, 2020, 32, 1054-1063.	3.2	74
23	Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. Journal of Power Sources, 2019, 438, 226954.	4.0	38
24	Unveiling the benefits of potassium doping on the structural integrity of Li–Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 24017-24025.	1.3	19
25	Retarding Phase Transformation During Cycling in a Lithium―and Manganeseâ€Rich Cathode Material by Optimizing Synthesis Conditions. ChemElectroChem, 2019, 6, 1385-1392.	1.7	8
26	Reversible High-Voltage N-Redox Chemistry in Metal–Organic Frameworks for High-Rate Anion-Intercalation Batteries. ACS Applied Energy Materials, 2019, 2, 413-419.	2.5	14
27	Exploring the Capacity Limit: A Layered Hexacarboxylate-Based Metal–Organic Framework for Advanced Lithium Storage. Inorganic Chemistry, 2018, 57, 3126-3132.	1.9	41
28	High-energy nanostructured Na ₃ V ₂ (PO ₄) ₂ O _{1.6} F _{1.4} cathodes for sodium-ion batteries and a new insight into their redox chemistry. Journal of Materials Chemistry A, 2018, 6, 8340-8348.	5.2	39
29	Green and Rational Design of 3D Layer-by-Layer MnO <i>_x</i> Hierarchically Mesoporous Microcuboids from MOF Templates for High-Rate and Long-Life Li-lon Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 14684-14697.	4.0	55
30	Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochimica Acta, 2018, 271, 608-616.	2.6	52
31	The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Materials, 2018, 14, 82-89.	9.5	35
32	One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-lon Batteries with Great Capacity and Stable Cycling Stability. Nano-Micro Letters, 2018, 10, 19.	14.4	33
33	Unraveling the Redox Couples of V ^{III} /V ^{IV} Mixed-Valent Na ₃ V ₂ (PO ₄₂ O _{1.6} F _{1.4} Cathode by Parallel-Mode EPR and In Situ/Ex Situ NMR. Journal of Physical Chemistry C, 2018, 122, 27224-27232.	1.5	35
34	Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2 cathode material by surface K+ doping. Electrochimica Acta, 2018, 291, 278-286.	2.6	27
35	Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T1 by ball milling in solid-state NMR. Solid State Nuclear Magnetic Resonance, 2018, 94, 20-25.	1.5	6
36	Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Science China Materials, 2018, 61, 1040-1048.	3.5	39

#	Article	IF	CITATIONS
37	Room-temperature synthesis of a cobalt 2,3,5,6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries. New Journal of Chemistry, 2017, 41, 1813-1819.	1.4	31
38	High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins. Energy Storage Materials, 2017, 7, 195-202.	9.5	28
39	Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. Journal of Materials Chemistry A, 2017, 5, 12828-12837.	5.2	80
40	Amorphization and disordering of metal–organic framework materials for rechargeable batteries by thermal treatment. New Journal of Chemistry, 2017, 41, 6415-6419.	1.4	14
41	Remarkable improvement in the lithium storage property of Co2(OH)2BDC MOF by covalent stitching to graphene and the redox chemistry boosted by delocalized electron spins. Chemical Engineering Journal, 2017, 326, 1000-1008.	6.6	53
42	Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochimica Acta, 2017, 253, 439-444.	2.6	67
43	Investigating the Electrochemical Behavior of Cobalt(II) Terephthalate (CoC8H4O4) as the Organic Anode in K-ion Battery. Electrochimica Acta, 2017, 253, 333-338.	2.6	40
44	Ultrathin Cobaltâ€Based Metal–Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage. Chemistry - A European Journal, 2017, 23, 15984-15990.	1.7	77
45	Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. Journal of Colloid and Interface Science, 2017, 506, 365-372.	5.0	31
46	Ultrathin Manganese-Based Metal–Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities. ACS Applied Materials & Diterfaces, 2017, 9, 29829-29838.	4.0	131
47	Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties. RSC Advances, 2016, 6, 114483-114490.	1.7	79
48	Capacity control of ferric coordination polymers by zinc nitrate for lithium-ion batteries. RSC Advances, 2016, 6, 86126-86130.	1.7	42
49	The organic-moiety-dominated Li ⁺ intercalation/deintercalation mechanism of a cobalt-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 16245-16251.	5. 2	116
50	A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries. New Journal of Chemistry, 2016, 40, 9746-9752.	1.4	104
51	Cobalt-based metal organic framework with superior lithium anodic performance. Journal of Solid State Chemistry, 2016, 242, 71-76.	1.4	130
52	Controlled synthesis of Co _x Mn _{3â^'x} O ₄ nanoparticles with a tunable composition and size for high performance lithium-ion batteries. RSC Advances, 2016, 6, 54270-54276.	1.7	14
53	High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15352-15360.	4.0	181
54	Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal–organic framework with high capacity. RSC Advances, 2016, 6, 61319-61324.	1.7	45

#	Article	lF	CITATIONS
55	Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chemical Communications, 2016, 52, 2035-2038.	2.2	65
56	Mesoporous nanostructured Co ₃ O ₄ derived from MOF template: a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5585-5591.	5.2	255