Jiyoon Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468044/publications.pdf

Version: 2024-02-01

38	924	16	29
papers	citations	h-index	g-index
38	38	38	1305
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Peptide $\hat{a}\in ``nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms?. Nano Convergence, 2018, 5, 38.$	12.1	140
2	High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale, 2017, 9, 13495-13505.	5 . 6	116
3	Chemically and Biologically Engineered Bacteriaâ€Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. Advanced Materials, 2021, 33, e2102580.	21.0	93
4	An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy. Nano Letters, 2020, 20, 4901-4909.	9.1	69
5	Nanoparticle Conjugation Stabilizes and Multimerizes β-Hairpin Peptides To Effectively Target PD-1/PD-L1 β-Sheet-Rich Interfaces. Journal of the American Chemical Society, 2020, 142, 1832-1837.	13.7	39
6	Immunoavidity-Based Capture of Tumor Exosomes Using Poly(amidoamine) Dendrimer Surfaces. Nano Letters, 2020, 20, 5686-5692.	9.1	39
7	Prognostic Significance of LC3B and p62/SQSTM1 Expression in Gastric Adenocarcinoma. Anticancer Research, 2019, 39, 6711-6722.	1.1	27
8	Surface engineering for efficient capture of circulating tumor cells in renal cell carcinoma: From nanoscale analysis to clinical application. Biosensors and Bioelectronics, 2020, 162, 112250.	10.1	27
9	Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells. Biomaterials, 2017, 125, 1-11.	11.4	25
10	Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke?. Nanomedicine, 2018, 13, 2327-2340.	3.3	25
11	Post-debulking circulating tumor cell as a poor prognostic marker in advanced stage ovarian cancer. Medicine (United States), 2019, 98, e15354.	1.0	25
12	Dual-patterned immunofiltration (DIF) device for the rapid efficient negative selection of heterogeneous circulating tumor cells. Lab on A Chip, 2016, 16, 4759-4769.	6.0	24
13	Lab on a fabric: Mass producible and low-cost fabric filters for the high-throughput viable isolation of circulating tumor cells. Biosensors and Bioelectronics, 2017, 91, 747-755.	10.1	24
14	Sub-lethal hyperthermia promotes epithelial-to-mesenchymal-like transition of breast cancer cells: implication of the synergy between hyperthermia and chemotherapy. RSC Advances, 2019, 9, 52-57.	3.6	24
15	Circulating tumor cells in the differential diagnosis of adnexal masses. Oncotarget, 2017, 8, 77195-77206.	1.8	19
16	Epithelial and mesenchymal circulating tumor cell isolation and discrimination using dual-immunopatterned device with newly-developed anti-63B6 and anti-EpCAM. Sensors and Actuators B: Chemical, 2018, 260, 320-330.	7.8	18
17	Enhancement of isolation sensitivity for the viable heterogeneous circulating tumor cells swelled by hypo-osmotic pressure. RSC Advances, 2017, 7, 49684-49693.	3.6	15
18	Cytopathological Study of the Circulating Tumor Cells filtered from the Cancer Patients' Blood using Hydrogel-based Cell Block Formation. Scientific Reports, 2018, 8, 15218.	3.3	15

#	Article	IF	CITATIONS
19	Enhanced detection of cell-free DNA (cfDNA) enables its use as a reliable biomarker for diagnosis and prognosis of gastric cancer. PLoS ONE, 2020, 15, e0242145.	2.5	14
20	Bimodal liquid biopsy for cancer immunotherapy based on peptide engineering and nanoscale analysis. Biosensors and Bioelectronics, 2022, 213, 114445.	10.1	14
21	Triâ€modal liquid biopsy: Combinational analysis of circulating tumor cells, exosomes, and cellâ€free DNA using machine learning algorithm. Clinical and Translational Medicine, 2021, 11, e499.	4.0	13
22	Dendrimers for cancer immunotherapy: Avidityâ€based drug delivery vehicles for effective antiâ€ŧumor immune response. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1752.	6.1	13
23	Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers, 2022, 14, 2061.	3.7	13
24	Multi-modal liquid biopsy platform for cancer screening: screening both cancer-associated rare cells and cancer cell-derived vesicles on the fabric filters for a reliable liquid biopsy analysis. Nano Convergence, 2019, 6, 39.	12.1	12
25	Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion. Advanced Science, 2022, 9, e2103098.	11.2	11
26	Cytochalasin B Treatment and Osmotic Pressure Enhance the Production of Extracellular Vesicles (EVs) with Improved Drug Loading Capacity. Nanomaterials, 2022, 12, 3.	4.1	10
27	Identification of a Clinical Cutoff Value for Multiplex KRASG12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay. Journal of Clinical Medicine, 2020, 9, 2283.	2.4	9
28	A viable circulating tumor cell isolation device with high retrieval efficiency using a reversibly deformable membrane barrier. Journal of Micromechanics and Microengineering, 2017, 27, 025015.	2.6	8
29	Clinical significance of atypical protein kinase C (PKC \hat{I} 1 and PKC \hat{I} 9) and its relationship with yes-associated protein in lung adenocarcinoma. BMC Cancer, 2019, 19, 804.	2.6	8
30	Viable and high-throughput isolation of heterogeneous circulating tumor cells using tapered-slit filters. Sensors and Actuators B: Chemical, 2020, 321, 128369.	7.8	7
31	Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. Biomacromolecules, 2021, 22, 3746-3755.	5.4	7
32	Microfluidic-based mechanical phenotyping of cells for the validation of epithelial-to-mesenchymal-like transition caused by insufficient heat treatment. Sensors and Actuators B: Chemical, 2017, 244, 591-598.	7.8	6
33	Branched, dendritic, and hyperbranched polymers in liquid biopsy device design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1770.	6.1	6
34	Quantification of circulating tumor cells as a biomarker for surveillance in oligometastatic patients after definitive radiation therapy Journal of Clinical Oncology, 2018, 36, e24106-e24106.	1.6	4
35	A multi-staining chip using hydrophobic valves for exfoliative cytology in cancer. Journal of Micromechanics and Microengineering, 2017, 27, 075022.	2.6	2
36	Fabrication of Formalin-Fixed, Paraffin-Embedded (FFPE) Circulating Tumor Cell (CTC) Block Using a Hydrogel Core-Mediated Method. Micromachines, 2021, 12, 1128.	2.9	2

#	Article	IF	CITATIONS
37	The Specific Gravity-Free Method for the Isolation of Circulating Tumor KRAS Mutant DNA and Exosome in Colorectal Cancer. Micromachines, 2021, 12, 987.	2.9	1
38	Graphene oxide coated fabric layers for the efficient isolation of circulating tumor cells. , 2017, , .		0