Chris Rasmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2467984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit. PLoS ONE, 2016, 11, e0157447.	2.5	204
2	l on the Prize: Inquiry Approaches in Undergraduate Mathematics. International Journal of Research in Undergraduate Mathematics Education, 2019, 5, 129-146.	1.8	125
3	When the Classroom Floor Becomes the Complex Plane: Addition and Multiplication as Ways of Bodily Navigation. Journal of the Learning Sciences, 2012, 21, 287-323.	2.9	91
4	Reasoning using particulate nature of matter: An example of a sociochemical norm in a university-level physical chemistry class. Chemistry Education Research and Practice, 2013, 14, 81-94.	2.5	82
5	The calculus student: insights from the Mathematical Association of America national study. International Journal of Mathematical Education in Science and Technology, 2013, 44, 685-698.	1.4	70
6	Examining individual and collective level mathematical progress. Educational Studies in Mathematics, 2015, 88, 259-281.	2.8	45
7	Brief Report: Characteristics of Precalculus Through Calculus 2 Programs: Insights From a National Census Survey. Journal for Research in Mathematics Education, 2019, 50, 98-111.	1.8	42
8	Capitalizing on advances in mathematics and k-12 mathematics education in undergraduate mathematics: An inquiry-oriented approach to differential equations. Asia Pacific Education Review, 2006, 7, 85-93.	2.5	39
9	ADAPTING A METHODOLOGY FROM MATHEMATICS EDUCATION RESEARCH TO CHEMISTRY EDUCATION RESEARCH: DOCUMENTING COLLECTIVE ACTIVITY. International Journal of Science and Mathematics Education, 2012, 10, 193-211.	2.5	37
10	A characterization of a unified notion of mathematical function: the case of high school function and linear transformation. Educational Studies in Mathematics, 2017, 95, 21-38.	2.8	25
11	Leveraging the design heuristics of realistic mathematics education and culturally responsive pedagogy to create a richer flipped classroom calculus curriculum. ZDM - International Journal on Mathematics Education, 2020, 52, 1051-1062.	2.2	24
12	Beyond Plug and Chug: an Analysis of Calculus I Homework. International Journal of Research in Undergraduate Mathematics Education, 2015, 1, 268-287.	1.8	20
13	Inverse, composition, and identity: The case of function and linear transformation. Journal of Mathematical Behavior, 2015, 37, 36-47.	0.9	19
14	Time for (Research on) Change in Mathematics Departments. International Journal of Research in Undergraduate Mathematics Education, 2020, 6, 147-158.	1.8	18
15	Towards the STEM DBER Alliance: why we need a discipline-based STEM education research community. International Journal of STEM Education, 2017, 4, 14.	5.0	15
16	Undergraduate course variations in precalculus through Calculus 2. International Journal of Mathematical Education in Science and Technology, 2020, 51, 858-875.	1.4	10
17	Instructional leadership structures across five university departments. Higher Education, 2021, 81, 865-887.	4.4	10
18	Ways in which engaging with someone else's reasoning is productive. Journal of Mathematical Behavior, 2020, 58, 100742.	0.9	9

CHRIS RASMUSSEN

#	Article	IF	CITATIONS
19	Towards the STEM DBER Alliance: Why we Need a Discipline-Based STEM Education Research Community. International Journal of Research in Undergraduate Mathematics Education, 2017, 3, 247-254.	1.8	7
20	Towards the STEM DBER Alliance: Why We Need a Discipline-Based, STEM-Education Research Community. Journal of Geoscience Education, 2017, 65, 215-218.	1.4	7
21	It's about time: the relationships between coverage and instructional practices in college calculus. International Journal of Mathematical Education in Science and Technology, 2016, 47, 491-504.	1.4	4
22	The Sierpinski smoothie: blending area and perimeter. Educational Studies in Mathematics, 2019, 101, 19-34.	2.8	3
23	The refiguring of students' mathematical identities: a mixed methods study of three tailored calculus courses. International Journal of Mathematical Education in Science and Technology, 2022, 53, 3286-3306.	1.4	3
24	In the Driver's Seat: Course Coordinators as Change Agents for Active Learning in University Precalculus to Calculus 2. International Journal of Research in Undergraduate Mathematics Education, 0, , 1.	1.8	3
25	Course CoordinatorÂOrientations Toward their Work and Opportunities for Professional Development. Innovative Higher Education, 2022, 47, 327-346.	2.5	3
26	Collectively engaging with others' reasoning: Building intuition through argumentation in a paradoxical situation. International Journal of Research in Undergraduate Mathematics Education, 2023, 9, 666-693.	1.8	1
27	RE: Conceptualization of the Continuum, an Educational Challenge for Undergraduate Students by Viviane Durand-Guerrier. International Journal of Research in Undergraduate Mathematics Education, 2017, 3, 8-8.	1.8	0