
Hiroyuki Hioki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2467699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local Connections of Pyramidal Neurons to Parvalbumin-Producing Interneurons in Motor-Associated Cortical Areas of Mice. ENeuro, 2022, 9, ENEURO.0567-20.2021.	1.9	5
2	Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. IScience, 2022, 25, 103601.	4.1	11
3	Uts2b is a microbiota-regulated gene expressed in vagal afferent neurons connected to enteroendocrine cells producing cholecystokinin. Biochemical and Biophysical Research Communications, 2022, 608, 66-72.	2.1	4
4	Structural basis for noradrenergic regulation of neural circuits in the mouse olfactory bulb. Journal of Comparative Neurology, 2021, 529, 2189-2208.	1.6	2
5	Efficient Labeling of Neurons and Identification of Postsynaptic Sites Using Adeno-Associated Virus Vector. Neuromethods, 2021, , 323-341.	0.3	8
6	Application of a Method for the Analysis of Dopaminergic. Methods in Molecular Biology, 2021, 2322, 141-150.	0.9	0
7	Application of Virus Vectors for Anterograde Tract-Tracing and Single-Neuron Labeling Studies. Neuromethods, 2021, , 303-322.	0.3	0
8	Tb ³⁺ -doped fluorescent glass for biology. Science Advances, 2021, 7, .	10.3	9
9	Exclusive labeling of direct and indirect pathway neurons in the mouse neostriatum by an adeno-associated virus vector with Cre/lox system. STAR Protocols, 2021, 2, 100230.	1.2	12
10	High-fat diet–induced activation of SGK1 promotes Alzheimer's disease–associated tau pathology. Human Molecular Genetics, 2021, 30, 1693-1710.	2.9	23
11	Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas. Neuron, 2021, 109, 1810-1824.e9.	8.1	60
12	Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
13	Susceptibility of subregions of prefrontal cortex and corpus callosum to damage by high-dose oxytocin-induced labor in male neonatal mice. PLoS ONE, 2021, 16, e0256693.	2.5	2
14	Kv4.2-Positive Domains on Dendrites in the Mouse Medial Geniculate Body Receive Ascending Excitatory and Inhibitory Inputs Preferentially From the Inferior Colliculus. Frontiers in Neuroscience, 2021, 15, 740378.	2.8	3
15	Analysis of Synaptic Connections at the Electron Microscopic Level Using Sindbis Virus Vectors. Neuromethods, 2021, , 343-352.	0.3	0
16	Generation of a MORâ€CreER knockâ€in mouse line to study cells and neural circuits involved in mu opioid receptor signaling. Genesis, 2020, 58, e23341.	1.6	15
17	A hypothalamic novelty signal modulates hippocampal memory. Nature, 2020, 586, 270-274.	27.8	121
18	Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment. IScience, 2020, 23, 101409.	4.1	15

#	Article	IF	CITATIONS
19	Visualizing and Modulating Mitophagy for Therapeutic Studies of Neurodegeneration. Cell, 2020, 181, 1176-1187.e16.	28.9	89
20	Reduction of Freezing Behavior by Acupuncture Stimulation at HT7 in Contextual Fear-Conditioned Mice. Juntendo Medical Journal, 2019, 65, 554-560.	0.1	0
21	Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science, 2018, 359, 935-939.	12.6	319
22	Hippocampal ripples down-regulate synapses. Science, 2018, 359, 1524-1527.	12.6	172
23	Parvalbuminâ€producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice. Journal of Neuroscience Research, 2018, 96, 1186-1207.	2.9	12
24	Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons. Brain Structure and Function, 2018, 223, 851-872.	2.3	8
25	Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Research, 2018, 1695, 18-30.	2.2	18
26	Intrinsic Projections of Layer Vb Neurons to Layers Va, III, and II in the Lateral and Medial Entorhinal Cortex of the Rat. Cell Reports, 2018, 24, 107-116.	6.4	58
27	GABAergic malfunction in the anterior cingulate cortex underlying maternal immune activation-induced social deficits. Journal of Neuroimmunology, 2018, 321, 92-96.	2.3	17
28	Projection Patterns of Corticofugal Neurons Associated with Vibrissa Movement. ENeuro, 2018, 5, ENEURO.0190-18.2018.	1.9	9
29	Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuronâ€tracing study using virus vectors. Journal of Comparative Neurology, 2017, 525, 166-185.	1.6	85
30	Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Scientific Reports, 2017, 7, 12764.	3.3	30
31	Dorsal and Ventral Parts of Thalamic Nucleus Submedius Project to Different Areas of Rat Orbitofrontal Cortex: A Single Neuron-Tracing Study Using Virus Vectors. Journal of Comparative Neurology, 2017, 525, 3821.	1.6	0
32	Dorsal and ventral parts of thalamic nucleus submedius project to different areas of rat orbitofrontal cortex: A single neuronâ€tracing study using virus vectors. Journal of Comparative Neurology, 2017, 525, 3821-3839.	1.6	20
33	Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. Journal of Comparative Neurology, 2017, 525, 574-591.	1.6	35
34	A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System. PLoS ONE, 2017, 12, e0169611.	2.5	41
35	Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Frontiers in Neuroanatomy, 2016, 10, 124.	1.7	29
36	Morphological analysis of the early development of telencephalic and diencephalic gonadotropinâ€releasing hormone neuronal systems in enhanced green fluorescent proteinâ€expressing transgenic medaka lines. Journal of Comparative Neurology, 2016, 524, 896-913.	1.6	21

Нігочикі Ніокі

#	Article	IF	CITATIONS
37	Analysis of Synaptic Connections at the Electron Microscopic Level Using Viral Vectors. Neuromethods, 2016, , 267-275.	0.3	Ο
38	Application of Virus Vectors for Anterograde Tract-Tracing and Single-Neuron Labeling Studies. Neuromethods, 2016, , 247-266.	0.3	0
39	Convergence of lemniscal and local excitatory inputs on large GABAergic tectothalamic neurons. Journal of Comparative Neurology, 2015, 523, 2277-2296.	1.6	20
40	Sequence of Molecular Events during the Maturation of the Developing Mouse Prefrontal Cortex. Molecular Neuropsychiatry, 2015, 1, 94-104.	2.9	15
41	Efficient and graded gene expression in glia and neurons of primary cerebellar cultures transduced by lentiviral vectors. Histochemistry and Cell Biology, 2015, 143, 109-121.	1.7	3
42	Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex. Anatomical Science International, 2015, 90, 7-21.	1.0	10
43	Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a singleâ€neuron tracing study with viral vectors. European Journal of Neuroscience, 2015, 41, 1294-1310.	2.6	63
44	Dorsal Horn Circuits for Persistent Mechanical Pain. Neuron, 2015, 87, 797-812.	8.1	259
45	ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience, 2015, 18, 1518-1529.	14.8	511
46	Ventral Medial Nucleus Neurons Send Thalamocortical Afferents More Widely and More Preferentially to Layer 1 than Neurons of the Ventral Anterior–Ventral Lateral Nuclear Complex in the Rat. Cerebral Cortex, 2015, 25, 221-235.	2.9	121
47	Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. Journal of Comparative Neurology, 2015, 523, 262-280.	1.6	38
48	3D Clustering of GABAergic Neurons Enhances Inhibitory Actions on Excitatory Neurons in the Mouse Visual Cortex. Cell Reports, 2014, 9, 1896-1907.	6.4	16
49	Preprodynorphinâ€expressing neurons constitute a large subgroup of somatostatinâ€expressing GABAergic interneurons in the mouse neocortex. Journal of Comparative Neurology, 2014, 522, 1506-1526.	1.6	34
50	Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat. Brain Structure and Function, 2014, 219, 211-229.	2.3	25
51	Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nature Neuroscience, 2014, 17, 503-505.	14.8	64
52	Psychological Stress Activates a Dorsomedial Hypothalamus-Medullary Raphe Circuit Driving Brown Adipose Tissue Thermogenesis and Hyperthermia. Cell Metabolism, 2014, 20, 346-358.	16.2	204
53	Cell Type-Specific Inhibitory Inputs to Dendritic and Somatic Compartments of Parvalbumin-Expressing Neocortical Interneuron. Journal of Neuroscience, 2013, 33, 544-555.	3.6	74
54	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	11.1	652

#	Article	IF	CITATIONS
55	Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188lr2.	12.4	5
56	EphA4â€dependent axon retraction and midline localization of <scp>E</scp> phrinâ€ <scp>B</scp> 3 are disrupted in the spinal cord of mice lacking <scp>mD</scp> ia1 and <scp>mD</scp> ia3 in combination. Genes To Cells, 2013, 18, 873-885.	1.2	9
57	Optogenetic stimulation of preoptic neurons inhibits brown adipose tissue sympathetic nerve activity. FASEB Journal, 2013, 27, 926.3.	0.5	0
58	Direct projection from the dorsomedial hypothalamus to the rostral medullary raphe drives brown adipose tissue thermogenesis. FASEB Journal, 2013, 27, 932.7.	0.5	0
59	A Morphological Analysis of Thalamocortical Axon Fibers of Rat Posterior Thalamic Nuclei: A Single Neuron Tracing Study with Viral Vectors. Cerebral Cortex, 2012, 22, 2840-2857.	2.9	159
60	Parvalbuminâ€producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. European Journal of Neuroscience, 2012, 35, 838-854.	2.6	47
61	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	12.4	465
62	Distribution of Gephyrinâ€Immunoreactivity in the Trigeminal Motor Nucleus: An Immunohistochemical Study in Rats. Anatomical Record, 2012, 295, 641-651.	1.4	5
63	Visualization of Cortical Projection Neurons with Retrograde TET-Off Lentiviral Vector. PLoS ONE, 2012, 7, e46157.	2.5	17
64	Single-neuron tracing study of thalamocortical projections arising from the rat ventral medial nucleus by using viral vectors. Neuroscience Research, 2011, 71, e89.	1.9	0
65	Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease. PLoS ONE, 2011, 6, e25788.	2.5	156
66	Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. European Journal of Neuroscience, 2011, 33, 95-109.	2.6	106
67	Expression of Gap Junction Protein Connexin36 in Multiple Subtypes of GABAergic Neurons in Adult Rat Somatosensory Cortex. Cerebral Cortex, 2011, 21, 2639-2649.	2.9	35
68	Local Connections of Excitatory Neurons to Corticothalamic Neurons in the Rat Barrel Cortex. Journal of Neuroscience, 2011, 31, 18223-18236.	3.6	25
69	Vesicular glutamate transporter 3â€expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. Journal of Comparative Neurology, 2010, 518, 668-686.	1.6	194
70	Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat. Journal of Comparative Neurology, 2010, 518, 3149-3168.	1.6	30
71	Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nature Neuroscience, 2010, 13, 173-179.	14.8	198
72	Single-neuron tracing study of thalamocortical projections arising from the rat ventral medial nucleus by using viral vectors. Neuroscience Research, 2010, 68, e262.	1.9	0

#	Article	IF	CITATIONS
73	A single-neuron analysis of rat subthalamic nucleus: Complete visualization with a viral vector. Neuroscience Research, 2010, 68, e261-e262.	1.9	0
74	Roles of mDia isoforms, a Rho effector, in neural development. Neuroscience Research, 2010, 68, e138.	1.9	0
75	Classification of neocortical inhibitory inputs into the PV-expressing neurons with BAC transgenic mice. Neuroscience Research, 2010, 68, e156.	1.9	0
76	TET-OFF lentiviral vectors drive high-level transgene expression in marmoset brains. Neuroscience Research, 2010, 68, e218-e219.	1.9	0
77	Golgi-like labeling of layer Va pyramidal cells in the neocortex of the BAC transgenic animals. Neuroscience Research, 2010, 68, e219.	1.9	0
78	Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum. Journal of Neuroscience, 2009, 29, 444-453.	3.6	670
79	Two Types of Thalamocortical Projections from the Motor Thalamic Nuclei of the Rat: A Single Neuron-Tracing Study Using Viral Vectors. Cerebral Cortex, 2009, 19, 2065-2077.	2.9	250
80	Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development (Cambridge), 2009, 136, 2049-2058.	2.5	106
81	High-level transgene expression in neurons by lentivirus with Tet-Off system. Neuroscience Research, 2009, 63, 149-154.	1.9	63
82	Efficient visualization of central neurons with lentiviral vectors expressing Red Fluorescent Proteins (RFP). Neuroscience Research, 2009, 65, S132.	1.9	0
83	Search for molecular markers of layer VI corticothalamic neurons in the rat neocortex. Neuroscience Research, 2009, 65, S177-S178.	1.9	0
84	Afferent islands are larger than μ-opioid receptor patch in striatum of rat pups. NeuroReport, 2009, 20, 584-588.	1.2	10
85	Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. European Journal of Neuroscience, 2008, 28, 1032-1046.	2.6	6
86	Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin–green fluorescent protein transgenic mice. European Journal of Neuroscience, 2008, 28, 2053-2064.	2.6	30
87	Some Î ³ -motoneurons contain Î ³ -aminobutyric acid in the rat cervical spinal cord. Brain Research, 2008, 1201, 78-87.	2.2	8
88	Targeting green fluorescent protein to dendritic membrane in central neurons. Neuroscience Research, 2008, 61, 79-91.	1.9	45
89	Sound-Intensity-Dependent Compensation for the Small Interaural Time Difference Cue for Sound Source Localization. Journal of Neuroscience, 2008, 28, 7153-7164.	3.6	75
90	Development of dendritic membrane-targeting signals using lentiviral vectors. Neuroscience Research, 2007, 58, S69.	1.9	0

#	Article	IF	CITATIONS
91	Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. Journal of Comparative Neurology, 2007, 500, 908-922.	1.6	12
92	Î ³ -Aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. Journal of Comparative Neurology, 2007, 502, 113-125.	1.6	66
93	Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Therapy, 2007, 14, 872-882.	4.5	134
94	Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. European Journal of Neuroscience, 2007, 26, 3054-3067.	2.6	90
95	Expression of D1 but not D2 dopamine receptors in striatal neurons producing neurokinin B in rats. European Journal of Neuroscience, 2007, 26, 3093-3103.	2.6	16
96	Vesicular glutamate transporter 3 (VGLUT3) identifies spatially segregated excitatory terminals in the rat substantia nigra. European Journal of Neuroscience, 2006, 23, 1063-1070.	2.6	17
97	Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain. Journal of Comparative Neurology, 2005, 492, 263-288.	1.6	139
98	Chemically Specific Circuit Composed of Vesicular Glutamate Transporter 3- and Preprotachykinin B-producing Interneurons in the Rat Neocortex. Cerebral Cortex, 2004, 14, 1266-1275.	2.9	68
99	Presynaptic localization of an AMPA-type glutamate receptor in corticostriatal and thalamostriatal axon terminals. European Journal of Neuroscience, 2004, 20, 3322-3330.	2.6	86
100	Vesicular glutamate transporter immunoreactivity in the central and peripheral endings of muscle-spindle afferents. Brain Research, 2004, 1011, 247-251.	2.2	62
101	Identification of Sympathetic Premotor Neurons in Medullary Raphe Regions Mediating Fever and Other Thermoregulatory Functions. Journal of Neuroscience, 2004, 24, 5370-5380.	3.6	259
102	Independent inputs by VGLUT2- and VGLUT3-positive glutamatergic terminals onto rat sympathetic preganglionic neurons. NeuroReport, 2004, 15, 431-436.	1.2	37
103	Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. Journal of Comparative Neurology, 2003, 465, 234-249.	1.6	79
104	Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience, 2003, 117, 1-6.	2.3	194
105	Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. Journal of Comparative Neurology, 2002, 444, 39-62.	1.6	368
106	Deep Imaging of Cleared Brain by Confocal Laser-Scanning Microscopy. Protocol Exchange, 0, , .	0.3	10