Timothy J Stasevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2467125/publications.pdf

Version: 2024-02-01

46 papers

2,696 citations

304743 22 h-index 289244 40 g-index

61 all docs

61 docs citations

61 times ranked

3828 citing authors

#	Article	IF	CITATIONS
1	Real-time quantification of single RNA translation dynamics in living cells. Science, 2016, 352, 1425-1429.	12.6	317
2	Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature, 2014, 516, 272-275.	27.8	237
3	High-performance probes for light and electron microscopy. Nature Methods, 2015, 12, 568-576.	19.0	225
4	Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Research, 2011, 39, 6475-6488.	14.5	219
5	FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?. Current Opinion in Cell Biology, 2010, 22, 403-411.	5.4	188
6	Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nature Cell Biology, 2019, 21, 162-168.	10.3	168
7	Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter. Science, 2008, 319, 466-469.	12.6	130
8	Direct Measurement of Association and Dissociation Rates of DNA Binding in Live Cells by Fluorescence Correlation Spectroscopy. Biophysical Journal, 2009, 97, 337-346.	0.5	124
9	Genetically encoded system to track histone modification in vivo. Scientific Reports, 2013, 3, 2436.	3.3	96
10	Quantifying transcription factor kinetics: At work or at play?. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 492-514.	5.2	90
11	Cross-Validating FRAP and FCS to Quantify the Impact of Photobleaching on In Vivo Binding Estimates. Biophysical Journal, 2010, 99, 3093-3101.	0.5	82
12	Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO Journal, 2010, 29, 1225-1234.	7.8	81
13	Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. Journal of Cell Biology, 2011, 192, 29-41.	5.2	78
14	A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo. Nature Communications, 2019, 10, 2947.	12.8	72
15	Evaluation of Chemical Fluorescent Dyes as a Protein Conjugation Partner for Live Cell Imaging. PLoS ONE, 2014, 9, e106271.	2.5	51
16	Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochemistry and Cell Biology, 2015, 144, 101-109.	1.7	49
17	Live-Cell Single RNA Imaging Reveals Bursts of Translational Frameshifting. Molecular Cell, 2019, 75, 172-183.e9.	9.7	40
18	Coupling of translation quality control and mRNA targeting to stress granules. Journal of Cell Biology, 2020, 219, .	5.2	40

#	Article	IF	Citations
19	Quantifying Single mRNA Translation Kinetics in Living Cells. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032078.	5.5	37
20	Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Nature Communications, 2021, 12, 3158.	12.8	36
21	Assembly of the transcription machinery: ordered and stable, random and dynamic, or both?. Chromosoma, 2011, 120, 533-545.	2.2	35
22	Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions. Nature Communications, 2019, 10, 3221.	12.8	33
23	Imaging Translational and Post-Translational Gene Regulatory Dynamics in Living Cells with Antibody-Based Probes. Trends in Genetics, 2017, 33, 322-335.	6.7	30
24	Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nature Structural and Molecular Biology, 2020, 27, 1095-1104.	8.2	30
25	She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nature Communications, 2017, 8, 2151.	12.8	25
26	Protein manipulation using single copies of short peptide tags in cultured cells and in <i>Drosophila melanogaster</i> . Development (Cambridge), 2021, 148, .	2.5	17
27	Imaging translational control by Argonaute with single-molecule resolution in live cells. Nature Communications, 2022, 13, .	12.8	17
28	Epitaxial Growth Writ Large. Science, 2010, 327, 423-424.	12.6	16
29	Quantifying histone and RNA polymerase II post-translational modification dynamics in mother and daughter cells. Methods, 2014, 70, 77-88.	3.8	16
30	Visualizing looping of two endogenous genomic loci using synthetic zincâ€finger proteins with antiâ€FLAG and antiâ€HA frankenbodies in living cells. Genes To Cells, 2021, 26, 905-926.	1.2	15
31	Computational design and interpretation of single-RNA translation experiments. PLoS Computational Biology, 2019, 15, e1007425.	3.2	12
32	Lighting up single-mRNA translation dynamics in living cells. Current Opinion in Genetics and Development, 2020, 61, 75-82.	3.3	12
33	Convergence of chromatin binding estimates in live cells. Nature Methods, 2013, 10, 691-692.	19.0	11
34	Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Molecular Biology of the Cell, 2020, 31, 2363-2378.	2.1	11
35	Crossover from the exact factor to the Boltzmann factor. American Journal of Physics, 1999, 67, 508-515.	0.7	10
36	Estimating cellular parameters through optimization procedures: elementary principles and applications. Frontiers in Physiology, 2015, 6, 60.	2.8	9

#	Article	IF	CITATIONS
37	Generation and diversification of recombinant monoclonal antibodies. ELife, 2021, 10, .	6.0	7
38	A Multi-color Bicistronic Biosensor to Compare the Translation Dynamics of Different Open Reading Frames at Single-molecule Resolution in Live Cells. Bio-protocol, 2021, 11, e4096.	0.4	2
39	A $<$ i>Drosophila $<$ i> toolkit for HA-tagged proteins unveils a block in autophagy flux in the last instar larval fat body. Development (Cambridge), 2022, 149, .	2.5	2
40	Single-Molecule Imaging of mRNA Interactions with Stress Granules. Methods in Molecular Biology, 2022, 2428, 349-360.	0.9	1
41	Stochastic Modeling of Single RNA Translation Dynamics. Biophysical Journal, 2018, 114, 152a.	0.5	О
42	Computational Design and Interpretation of Single-RNA Translation Experiments. Biophysical Journal, 2020, 118, 547a-548a.	0.5	0
43	Computational design and interpretation of single-RNA translation experiments. , 2019, 15, e1007425.		O
44	Computational design and interpretation of single-RNA translation experiments., 2019, 15, e1007425.		0
45	Computational design and interpretation of single-RNA translation experiments. , 2019, 15, e1007425.		O
46	Computational design and interpretation of single-RNA translation experiments. , 2019, 15, e1007425.		0