Dan Kawamori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2466203/publications.pdf Version: 2024-02-01

DAN KAWAMORI

#	Article	IF	CITATIONS
1	Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nature Medicine, 2004, 10, 1128-1132.	15.2	317
2	Insulin Signaling in α Cells Modulates Glucagon Secretion In Vivo. Cell Metabolism, 2009, 9, 350-361.	7.2	271
3	The Forkhead Transcription Factor Foxo1 Bridges the JNK Pathway and the Transcription Factor PDX-1 through Its Intracellular Translocation. Journal of Biological Chemistry, 2006, 281, 1091-1098.	1.6	226
4	Oxidative Stress Induces Nucleo-Cytoplasmic Translocation of Pancreatic Transcription Factor PDX-1 Through Activation of c-Jun NH2-terminal Kinase. Diabetes, 2003, 52, 2896-2904.	0.3	191
5	Modulation of the JNK Pathway in Liver Affects Insulin Resistance Status. Journal of Biological Chemistry, 2004, 279, 45803-45809.	1.6	187
6	Liver-Derived Systemic Factors Drive β Cell Hyperplasia in Insulin-Resistant States. Cell Reports, 2013, 3, 401-410.	2.9	123
7	Oxidative Stress and Pancreatic Î ² -Cell Dysfunction. American Journal of Therapeutics, 2005, 12, 529-533.	0.5	106
8	Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Research and Clinical Practice, 2002, 57, 1-10.	1.1	102
9	Glucagon-like Peptide-1 Increases β-Cell Glucose Competence and Proliferation by Translational Induction of Insulin-like Growth Factor-1 Receptor Expression. Journal of Biological Chemistry, 2010, 285, 10538-10545.	1.6	77
10	Cyclin D2 Is Essential for the Compensatory β-Cell Hyperplastic Response to Insulin Resistance in Rodents. Diabetes, 2010, 59, 987-996.	0.3	60
11	PDX-1 functions as a master factor in the pancreas. Frontiers in Bioscience - Landmark, 2008, Volume, 6406.	3.0	52
12	Â40 Isoform of p53 Controls Â-Cell Proliferation and Glucose Homeostasis in Mice. Diabetes, 2011, 60, 1210-1222.	0.3	52
13	Insulin modulation of glucagon secretion: The role of insulin and other factors in the regulation of glucagon secretion. Islets, 2009, 1, 276-279.	0.9	49
14	Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein elF4G1 in pancreatic β cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2319-28.	3.3	42
15	Vitamin D deficiency is significantly associated with retinopathy in young Japanese type 1 diabetic patients. Diabetes Research and Clinical Practice, 2014, 106, e41-e43.	1.1	34
16	GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in βIRKO mice. Diabetologia, 2017, 60, 1442-1453.	2.9	33
17	Glucotoxicity induces abnormal glucagon secretion through impaired insulin signaling in InR1G cells. PLoS ONE, 2017, 12, e0176271.	1.1	27
18	Molecular Pathways Underlying the Pathogenesis of Pancreatic α-Cell Dysfunction. Advances in Experimental Medicine and Biology, 2010, 654, 421-445.	0.8	26

DAN KAWAMORI

#	Article	IF	CITATIONS
19	Significant elevation of serum dipeptidyl peptidase-4 activity in young-adult type 1 diabetes. Diabetes Research and Clinical Practice, 2016, 113, 135-142.	1.1	23
20	Skin autofluorescence is associated with vascular complications in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 2018, 32, 839-844.	1.2	21
21	Dysregulated plasma glucagon levels in Japanese young adult type 1 diabetes patients. Journal of Diabetes Investigation, 2019, 10, 62-66.	1.1	16
22	Exploring the molecular mechanisms underlying α- and β-cell dysfunction in diabetes. Diabetology International, 2017, 8, 248-256.	0.7	14
23	Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon, 2019, 5, e01715.	1.4	9
24	Consistency of plasma glucagon levels in patients with typeÂ1 diabetes after a 1â€year period. Journal of Diabetes Investigation, 2020, 11, 337-340.	1.1	6
25	Plasma lipopolysaccharide binding protein level statistically mediates between body mass index and chronic microinflammation in Japanese patients with type 1 diabetes. Diabetology International, 2020, 11, 293-297.	0.7	6
26	Alpha the versatile: Guardians of the islets. Journal of Diabetes Investigation, 2019, 10, 26-28.	1.1	2
27	Beginning of a new era in glucagon research: Breakthrough by the new glucagon assay. Journal of Diabetes Investigation, 2020, 11, 1123-1125.	1.1	2