Robert Elschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2466034/publications.pdf

Version: 2024-02-01

623734 501196 32 792 14 28 citations g-index h-index papers 32 32 32 793 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G. IEEE Communications Magazine, 2018, 56, 144-151.	6.1	232
2	Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction. Optics Express, 2012, 20, 13100.	3.4	70
3	Bandwidth-Variable Transceivers based on Four-Dimensional Modulation Formats. Journal of Lightwave Technology, 2014, 32, 2886-2895.	4.6	70
4	Experimental demonstration of a format-flexible single-carrier coherent receiver using data-aided digital signal processing. Optics Express, 2012, 20, 28786.	3.4	57
5	Experimental Demonstrations of High-Capacity THz-Wireless Transmission Systems for Beyond 5G. IEEE Communications Magazine, 2020, 58, 41-47.	6.1	35
6	Performance Evaluation of DWDM Communication Systems With Fiber Optical Parametric Amplifiers. Journal of Lightwave Technology, 2013, 31, 1454-1461.	4.6	29
7	Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals. Journal of Lightwave Technology, 2015, 33, 1445-1451.	4.6	28
8	Enabling S-C-L-Band Systems With Standard C-Band Modulator and Coherent Receiver Using Coherent System Identification and Nonlinear Predistortion. Journal of Lightwave Technology, 2022, 40, 1360-1368.	4.6	27
9	All-Optical Data Frequency Multiplexing on Single-Wavelength Carrier Light by Sequentially Provided Cross-Phase Modulation in Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 577-584.	2.9	21
10	Parametric Amplification and Wavelength Conversion of Single- and Dual-Polarization DQPSK Signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 988-995.	2.9	19
11	Impact of Pump-Phase Modulation on FWM-Based Wavelength Conversion of D(Q)PSK Signals. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 666-673.	2.9	18
12	Waveband-Shift-Free Optical Phase Conjugator for Spectrally Efficient Fiber Nonlinearity Mitigation. Journal of Lightwave Technology, 2018, 36, 1309-1317.	4.6	16
13	Improving Achievable Information Rates of 64-GBd PDM-64QAM by Nonlinear Transmitter Predistortion. , 2018, , .		16
14	Noise suppression properties of an interferometer-based regenerator for differential phase-shift keying data. Optics Letters, 2007, 32, 112.	3.3	14
15	Distributed Ultradense Optical Frequency-Division Multiplexing Using Fiber Nonlinearity. Journal of Lightwave Technology, 2013, 31, 628-633.	4.6	14
16	Extinction Ratio Improvement Due to a Bogatov-Like Effect in Ultralong Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2009, 45, 629-636.	1.9	13
17	THz-Range Optical Frequency Shifter for Dual Polarization WDM Signals Using Frequency Conversion in Fiber. Journal of Lightwave Technology, 2017, 35, 1267-1273.	4.6	13
18	Coherent UDWDM PON with joint subcarrier reception at OLT. Optics Express, 2014, 22, 16876.	3.4	12

#	Article	IF	CITATIONS
19	Experimental Investigation of 126-Gb/s 6PolSK-QPSK signals. Optics Express, 2012, 20, B232.	3.4	10
20	Chromatic Dispersion in InGaAsP Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2010, 46, 644-649.	1.9	9
21	Multi-stage optical FDM of 12-channel 10-Gb/s data with 20-GHz exact channel spacing using fiber cross-phase modulation with optical subcarrier signals. Optics Express, 2011, 19, B295.	3.4	9
22	Coherent Subcarrier Processing Node Based on Optical Frequency Conversion and Free-Running Lasers. Journal of Lightwave Technology, 2015, 33, 685-693.	4.6	8
23	Impact of Brillouin Backscattering on Signal Distortions in Single-Fiber Diversity Loop Based Polarization-Insensitive FOPAs. Journal of Lightwave Technology, 2017, 35, 4137-4144.	4.6	8
24	Wavelength conversion using fiber cross-phase modulation driven by two pump waves. Optics Express, 2019, 27, 16767.	3.4	8
25	Operational Conditions for Extinction Ratio Improvement in Ultralong SOAs. IEEE Photonics Technology Letters, 2009, 21, 106-108.	2.5	7
26	Distributed Aggregation of Spectrally Efficient Single- and Dual-Polarization Super-Channels by Optical Frequency Conversion in Fiber. Journal of Lightwave Technology, 2016, 34, 618-625.	4.6	6
27	Co- and Counterphasing Tolerances for Dual-Pump Parametric \$lambda\$-Conversion of D(Q)PSK Signals. IEEE Photonics Technology Letters, 2009, 21, 706-708.	2.5	5
28	Time-Domain Modeling of Ultralong Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2010, 46, 484-491.	1.9	5
29	Enabling S-C-L-Band Systems with Standard C-Band Modulator and Coherent Receiver using Nonlinear Predistortion., 2021,,.		4
30	Coherent-Optical In-Line Add/Drop of PDM Tributaries of Subcarrier Multiplexed Signals. IEEE Photonics Technology Letters, 2016, 28, 1465-1468.	2.5	3
31	400-Gb/s Single-Photodiode Polarization-Agnostic Kramers–Kronig Reception of Distributedly Aggregated Superchannel. Journal of Lightwave Technology, 2019, 37, 156-162.	4.6	3
32	Characterization and Linearization of High Bandwidth Integrated Optical Transmitter Modules. , 2020,		3