Qing-Yuan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 2009, 15, 573-585.	5.2	414
2	Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction, 2006, 131, 193-205.	1.1	255
3	BTG4 is a meiotic cell cycle–coupled maternal-zygotic-transition licensing factor in oocytes. Nature Structural and Molecular Biology, 2016, 23, 387-394.	3.6	209
4	Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle, 2009, 8, 2741-2747.	1.3	141
5	Oocyte ageing and epigenetics. Reproduction, 2015, 149, R103-R114.	1.1	132
6	DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet–Induced Obesity. Environmental Health Perspectives, 2014, 122, 159-164.	2.8	130
7	Environmental epigenetic inheritance through gametes and implications for human reproduction. Human Reproduction Update, 2015, 21, 194-208.	5.2	128
8	Unique insights into maternal mitochondrial inheritance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13038-13043.	3.3	126
9	Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes: Effects of gonadotropins, cumulus cells, follicular size, and protein synthesis inhibition. Molecular Reproduction and Development, 2001, 59, 192-198.	1.0	117
10	The root of reduced fertility in aged women and possible therapentic options: Current status and future perspects. Molecular Aspects of Medicine, 2014, 38, 54-85.	2.7	117
11	Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microscopy Research and Technique, 2003, 61, 342-348.	1.2	115
12	The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nature Communications, 2014, 5, 4887.	5.8	102
13	Bub3 Is a Spindle Assembly Checkpoint Protein Regulating Chromosome Segregation during Mouse Oocyte Meiosis. PLoS ONE, 2009, 4, e7701.	1.1	97
14	Essential role for SUN5 in anchoring sperm head to the tail. ELife, 2017, 6, .	2.8	84
15	Mutations in PMFBP1 Cause Acephalic Spermatozoa Syndrome. American Journal of Human Genetics, 2018, 103, 188-199.	2.6	81
16	Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Frontiers in Bioscience - Landmark, 2006, 11, 1137.	3.0	80
17	SIRT1, 2, 3 protect mouse oocytes from postovulatory aging. Aging, 2016, 8, 685-694.	1.4	78
18	Maternal factors required for oocyte developmental competence in mice: Transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. Cell Cycle, 2013, 12, 1928-1938.	1.3	70

#	Article	IF	CITATIONS
19	N6-Methyladenosine Sequencing Highlights the Involvement of mRNA Methylation in Oocyte Meiotic Maturation and Embryo Development by Regulating Translation in Xenopus laevis. Journal of Biological Chemistry, 2016, 291, 23020-23026.	1.6	66
20	Sperm-carried RNAs play critical roles in mouse embryonic development. Oncotarget, 2017, 8, 67394-67405.	0.8	66
21	Oocyte-Specific Knockout: A Novel In Vivo Approach for Studying Gene Functions During Folliculogenesis, Oocyte Maturation, Fertilization, and Embryogenesis1. Biology of Reproduction, 2008, 79, 1014-1020.	1.2	64
22	CRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nature Communications, 2015, 6, 8017.	5.8	62
23	<i>Mettl14</i> is required for mouse postimplantation development by facilitating epiblast maturation. FASEB Journal, 2019, 33, 1179-1187.	0.2	60
24	Viable rabbits derived from reconstructed Oocytes by germinal vesicle transfer after intracytoplasmic sperm injection (ICSI). Molecular Reproduction and Development, 2001, 58, 180-185.	1.0	53
25	Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I. Journal of Cell Biology, 2018, 217, 3901-3911.	2.3	53
26	In vitro fertilisation of mouse oocytes reconstructed by transfer of metaphase II chromosomes results in live births. Zygote, 2001, 9, 9-14.	0.5	52
27	Phosphorylation of Mitogen-Activated Protein Kinase Is Regulated by Protein Kinase C, Cyclic 3′,5′-Adenosine Monophosphate, and Protein Phosphatase Modulators During Meiosis Resumption in Rat Oocytes1. Biology of Reproduction, 2001, 64, 1444-1450.	1.2	52
28	Sperm Mitochondria in Reproduction: Good or Bad and Where Do They Go?. Journal of Genetics and Genomics, 2013, 40, 549-556.	1.7	52
29	Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Scientific Reports, 2016, 6, 25838.	1.6	50
30	Epigenetic dynamics and interplay during spermatogenesis and embryogenesis: implications for male fertility and offspring health. Oncotarget, 2017, 8, 53804-53818.	0.8	50
31	Microtubule assembly after treatment of pig oocytes with taxol: Correlation with chromosomes, ?-tubulin, and MAP kinase. Molecular Reproduction and Development, 2001, 60, 481-490.	1.0	49
32	Resveratrol increases resistance of mouse oocytes to postovulatory aging in vivo. Aging, 2018, 10, 1586-1596.	1.4	48
33	LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget, 2016, 7, 5738-5753.	0.8	44
34	Brefeldin A disrupts asymmetric spindle positioning in mouse oocytes. Developmental Biology, 2008, 313, 155-166.	0.9	43
35	Cyclins regulating oocyte meiotic cell cycle progressionâ€. Biology of Reproduction, 2019, 101, 878-881.	1.2	41
36	Global profiling of RNA-binding protein target sites by LACE-seq. Nature Cell Biology, 2021, 23, 664-675.	4.6	40

#	Article	IF	CITATIONS
37	Scaffold Subunit Aalpha of PP2A Is Essential for Female Meiosis and Fertility in Mice1. Biology of Reproduction, 2014, 91, 19.	1.2	38
38	Singleâ€cell RNA sequencing reveals the landscape of early female germ cell development. FASEB Journal, 2020, 34, 12634-12645.	0.2	38
39	Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocyte. Journal of Cell Science, 2013, 126, 1595-603.	1.2	37
40	Cep55 regulates spindle organization and cell cycle progression in meiotic oocyte. Scientific Reports, 2015, 5, 16978.	1.6	37
41	Roles of Resveratrol in Improving the Quality of Postovulatory Aging Oocytes In Vitro. Cells, 2019, 8, 1132.	1.8	37
42	Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging, 2017, 9, 2480-2488.	1.4	36
43	Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochemistry and Cell Biology, 2018, 150, 303-325.	0.8	36
44	PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome. Nature Communications, 2020, 11, 6354.	5.8	36
45	N-acetyl-L-cysteine (NAC) delays post-ovulatory oocyte aging in mouse. Aging, 2019, 11, 2020-2030.	1.4	36
46	Maternal Diabetes Mellitus and the Origin of Non-Communicable Diseases in Offspring: The Role of Epigenetics1. Biology of Reproduction, 2014, 90, 139.	1.2	35
47	Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reproduction, Fertility and Development, 2015, 27, 934.	0.1	35
48	Why is oocyte aneuploidy increased with maternal aging?. Journal of Genetics and Genomics, 2020, 47, 659-671.	1.7	35
49	cAMP inhibits mitogen-activated protein (MAP) kinase activation and resumption of meiosis, but exerts no effects after spontaneous germinal vesicle breakdown (GVBD) in mouse oocytes. Reproduction, Fertility and Development, 1999, 11, 81.	0.1	33
50	Mitogen-activated protein kinase in human eggs. Zygote, 1999, 7, 181-185.	0.5	33
51	Cyclin B3 controls anaphase onset independent of spindle assembly checkpoint in meiotic oocytes. Cell Cycle, 2015, 14, 2648-2654.	1.3	33
52	Poly(ADP-ribose) mediates asymmetric division of mouse oocyte. Cell Research, 2018, 28, 462-475.	5.7	32
53	Checkpoint kinase 1 is essential for meiotic cell cycle regulation in mouse oocytes. Cell Cycle, 2012, 11, 1948-1955.	1.3	31
54	Melatonin defends mouse oocyte quality from benzo[ghi]peryleneâ€induced deterioration. Journal of Cellular Physiology, 2019, 234, 6220-6229.	2.0	31

#	Article	IF	CITATIONS
55	METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death and Disease, 2021, 12, 989.	2.7	31
56	Activation of protein kinase C induces cortical granule exocytosis in a Ca2+-independent manner, but not the resumption of cell cycle in porcine eggs. Development Growth and Differentiation, 1997, 39, 523-529.	0.6	30
57	Insulin Reduces Reaction of Follicular Granulosa Cells to FSH Stimulation in Women With Obesity-Related Infertility During IVF. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2547-2560.	1.8	30
58	Septin2 is modified by SUMOylation and required for chromosome congression in mouse oocytes. Cell Cycle, 2010, 9, 1607-1616.	1.3	28
59	Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle, 2015, 14, 2701-2710.	1.3	27
60	Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in miceâ€. Biology of Reproduction, 2019, 100, 1673-1685.	1.2	26
61	Enriched Environment-induced Maternal Weight Loss Reprograms Metabolic Gene Expression in Mouse Offspring. Journal of Biological Chemistry, 2015, 290, 4604-4619.	1.6	25
62	Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes. Scientific Reports, 2016, 6, 38574.	1.6	25
63	Oocyte-specific deletion of <i>N-WASP</i> does not affect oocyte polarity, but causes failure of meiosis II completion. Molecular Human Reproduction, 2016, 22, 613-621.	1.3	25
64	Cyclin B2/CDK1 inhibits separase activity in oocyte meiosis I. Development (Cambridge), 2019, 146, .	1.2	25
65	Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nature Biomedical Engineering, 2022, 6, 339-350.	11.6	25
66	Phosphorylation of p90rsk during meiotic maturation and parthenogenetic activation of rat oocytes: correlation with MAP kinases. Zygote, 2001, 9, 269-276.	0.5	24
67	Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochemistry and Cell Biology, 2016, 145, 647-657.	0.8	24
68	A noncanonical role of NOD-like receptor NLRP14 in PGCLC differentiation and spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22237-22248.	3.3	24
69	Metformin protects against mouse oocyte apoptosis defects induced by arecoline. Cell Proliferation, 2020, 53, e12809.	2.4	24
70	Effect of postovulatory oocyte aging on DNA methylation imprinting acquisition in offspring oocytes. Fertility and Sterility, 2011, 96, 1479-1484.	0.5	23
71	The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development (Cambridge), 2019, 146, .	1.2	22
72	RNA-Seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization. BMC Genomics, 2020, 21, 475.	1.2	22

#	Article	IF	CITATIONS
73	Single-cell RNA sequencing reveals regulation of fetal ovary development in the monkey (Macaca) Tj ETQq1 1 0.7	84314 rgB ⁻ 3.1	T/Overlock
74	Absence of mitochondrial DNA methylation in mouse oocyte maturation, aging and early embryo development. Biochemical and Biophysical Research Communications, 2019, 513, 912-918.	1.0	18
75	Mitochondrial regulation of [Ca ²⁺]i oscillations during cell cycle resumption of the second meiosis of oocyte. Cell Cycle, 2018, 17, 1471-1486.	1.3	17
76	Single xenotransplant of rat brown adipose tissue prolonged the ovarian lifespan of aging mice by improving follicle survival. Aging Cell, 2019, 18, e13024.	3.0	17
77	Effects of 2,3′,4,4′5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring's oocytes in mice. Archives of Toxicology, 2019, 93, 2575-2592.	1.9	17
78	Melatonin protects against Fenoxaprop-ethyl exposure-induced meiotic defects in mouse oocytes. Toxicology, 2019, 425, 152241.	2.0	17
79	Chronic cadmium exposure causes oocyte meiotic arrest by disrupting spindle assembly checkpoint and maturation promoting factor. Reproductive Toxicology, 2020, 96, 141-149.	1.3	17
80	The Dynamics and Regulatory Mechanism of Pronuclear H3k9me2 Asymmetry in Mouse Zygotes. Scientific Reports, 2016, 5, 17924.	1.6	16
81	Ablation of beta subunit of protein kinase CK2 in mouse oocytes causes follicle atresia and premature ovarian failure. Cell Death and Disease, 2018, 9, 508.	2.7	16
82	Polar Bodies in Assisted Reproductive Technology: Current Progress and Future Perspectives1. Biology of Reproduction, 2015, 92, 19.	1.2	15
83	Oocyte-specific deletion of furin leads to female infertility by causing early secondary follicle arrest in mice. Cell Death and Disease, 2017, 8, e2846-e2846.	2.7	15
84	Protein phosphatase 6 is a key factor regulating spermatogenesis. Cell Death and Differentiation, 2020, 27, 1952-1964.	5.0	15
85	Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility. Journal of Cell Science, 2015, 128, 3769-80.	1.2	14
86	Mitochondrial replacement techniques or therapies (MRTs) to improve embryo development and to prevent mitochondrial disease transmission. Journal of Genetics and Genomics, 2017, 44, 371-374.	1.7	14
87	Fenoxapropâ€ethyl affects mouse oocyte quality and the underlying mechanisms. Pest Management Science, 2019, 75, 844-851.	1.7	14
88	Distinct subcellular localization and potential role of LINE1-ORF1P in meiotic oocytes. Histochemistry and Cell Biology, 2016, 145, 93-104.	0.8	13
89	RNA-associated protein LSM family member 14 controls oocyte meiotic maturation through regulating mRNA pools. Journal of Reproduction and Development, 2017, 63, 383-388.	0.5	13
90	Type 2 diabetes increases oocyte mtDNA mutations which are eliminated in the offspring by bottleneck effect. Reproductive Biology and Endocrinology, 2018, 16, 110.	1.4	13

#	Article	IF	CITATIONS
91	Degradation of Ccnb3 is essential for maintenance of MII arrest in oocyte. Biochemical and Biophysical Research Communications, 2020, 521, 265-269.	1.0	13
92	CDC6 regulates both G2/M transition and metaphaseâ€ŧoâ€anaphase transition during the first meiosis of mouse oocytes. Journal of Cellular Physiology, 2020, 235, 5541-5554.	2.0	13
93	Cytoplasmic Determination of Meiotic Spindle Size Revealed by a Unique Inter-Species Germinal Vesicle Transfer Model. Scientific Reports, 2016, 6, 19827.	1.6	12
94	Argonaute 2 is a key regulator of maternal mRNA degradation in mouse early embryos. Cell Death Discovery, 2020, 6, 133.	2.0	12
95	Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity. PLoS Genetics, 2016, 12, e1006513.	1.5	12
96	Multiple superovulations alter histone modifications in mouse early embryos. Reproduction, 2019, 157, 511-523.	1.1	12
97	THE CULTURE OF FIBROBLASTS FROM DIAPHRAGM OF GIANT PANDA. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 644.	0.7	11
98	Mouse-rabbit germinal vesicle transfer reveals that factors regulating oocyte meiotic progression are not species-specific in mammals. The Journal of Experimental Zoology, 2001, 289, 322-329.	1.4	11
99	Ceminin deletion in mouse oocytes results in impaired embryo development and reduced fertility. Molecular Biology of the Cell, 2016, 27, 768-775.	0.9	11
100	Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death and Differentiation, 2019, 26, 969-980.	5.0	10
101	Type 1 diabetes affects zona pellucida and genome methylation in oocytes and granulosa cells. Molecular and Cellular Endocrinology, 2020, 500, 110627.	1.6	10
102	Glucocorticoid exposure affects female fertility by exerting its effect on the uterus but not on the oocyte: lessons from a hypercortisolism mouse model. Human Reproduction, 2018, 33, 2285-2294.	0.4	9
103	Embryo quality, and not chromosome nondiploidy, affects mitochondrial DNA content in mouse blastocysts. Journal of Cellular Physiology, 2019, 234, 10481-10488.	2.0	9
104	Deletion of Mylk1 in Oocytes Causes Delayed Morula-to-Blastocyst Transition and Reduced Fertility Without Affecting Folliculogenesis and Oocyte Maturation in Mice1. Biology of Reproduction, 2015, 92, 97.	1.2	8
105	The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology, 2017, 102, 67-74.	0.9	8
106	DNA methylation establishment of CpG islands near maternally imprinted genes on chromosome 7 during mouse oocyte growth. Molecular Reproduction and Development, 2020, 87, 800-807.	1.0	8
107	Oligoasthenoteratospermia and sperm tail bending in PPP4C-deficient mice. Molecular Human Reproduction, 2021, 27, .	1.3	8
108	The effects of cryopreservation on the acrosome structure, enzyme activity, motility, and fertility of bovine, ovine, and goat sperm. Animal Reproduction, 2020, 17, e20200219.	0.4	8

#	Article	IF	CITATIONS
109	The role of Ca2+ and protein kinase C in the acrosome reaction of Giant Panda () spermatozoa. Theriogenology, 1996, 46, 359-367.	0.9	7
110	Activity of MAPK/p90rsk During Fertilization in Mice, Rats, and Pigs. , 2004, 253, 293-304.		7
111	CenpH regulates meiotic G2/M transition by modulating the APC/CCdh1-cyclin B1 pathway in oocytes. Development (Cambridge), 2017, 144, 305-312.	1.2	7
112	Correlation between ubiquitination and defects of bull spermatozoa and removal of defective spermatozoa using anti-ubiquitin antibody-coated magnetized beads. Animal Reproduction Science, 2018, 192, 44-52.	0.5	7
113	Overexpression of cyclin A1 promotes meiotic resumption but induces premature chromosome separation in mouse oocyte. Journal of Cellular Physiology, 2020, 235, 7136-7145.	2.0	7
114	Effects of various calcium transporters on mitochondrial Ca ²⁺ changes and oocyte maturation. Journal of Cellular Physiology, 2021, 236, 6548-6558.	2.0	7
115	FBXO34 Regulates the C2/M Transition and Anaphase Entry in Meiotic Oocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 647103.	1.8	7
116	The Cyclin B2/CDK1 Complex Conservatively Inhibits Separase Activity in Oocyte Meiosis II. Frontiers in Cell and Developmental Biology, 2021, 9, 648053.	1.8	7
117	A hypothetical role for autophagy during the day/night rhythmâ€regulated melatonin synthesis in the rat pineal gland. Journal of Pineal Research, 2021, 71, e12742.	3.4	7
118	Gm364 coordinates MIB2/DLL3/Notch2 to regulate female fertility through AKT activation. Cell Death and Differentiation, 2022, 29, 366-380.	5.0	7
119	The Sperm Centrosome: Its Role and Significance in Nature and Human Assisted Reproduction. Journal of Reproductive and Stem Cell Biotechnology, 2011, 2, 121-127.	0.1	6
120	NEK5 regulates cell cycle progression during mouse oocyte maturation and preimplantation embryonic development. Molecular Reproduction and Development, 2019, 86, 1189-1198.	1.0	6
121	Gefitinib reduces oocyte quality by disturbing meiotic progression. Toxicology, 2021, 452, 152705.	2.0	6
122	Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality. Food and Function, 2022, 13, 5396-5405.	2.1	6
123	PKCβ1 regulates meiotic cell cycle in mouse oocyte. Cell Cycle, 2019, 18, 395-412.	1.3	5
124	Deletion of <i>Ck2β</i> gene causes germ cell development arrest and azoospermia in male mice. Cell Proliferation, 2020, 53, e12726.	2.4	5
125	Mitochondrial Ca2 + Is Related to Mitochondrial Activity and Dynamic Events in Mouse Oocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 585932.	1.8	5
126	Cell division cycle 23 is required for mouse oocyte meiotic maturation. FASEB Journal, 2020, 34, 8990-9002.	0.2	5

#	Article	IF	CITATIONS
127	Mechanistic insights into the reduced developmental capacity of in vitro matured oocytes and importance of cumulus cells in oocyte quality determination. Journal of Cellular Physiology, 2020, 235, 9743-9751.	2.0	5
128	Paraquat Reduces the Female Fertility by Impairing the Oocyte Maturation in Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 631104.	1.8	5
129	Correlation between in vitro fertilization and artificial insemination in Holstein bulls. Animal Bioscience, 2021, 34, 1879-1885.	0.8	5
130	ÂNuclear and cytoplasmic quality of oocytes derived from serumâ€free culture of secondary follicles in vitro. Journal of Cellular Physiology, 2021, 236, 5352-5361.	2.0	5
131	Specific deletion of protein phosphatase 6 catalytic subunit in Sertoli cells leads to disruption of spermatogenesis. Cell Death and Disease, 2021, 12, 883.	2.7	5
132	Calcium-Independent, Egg Age-Dependent Parthenogenic Activation of Mouse Eggs by Staurosporine Journal of Reproduction and Development, 1997, 43, 189-197.	0.5	5
133	Toxic effects of patulin on mouse oocytes and its possible mechanisms. Toxicology, 2021, 464, 153013.	2.0	5
134	Inhibiting bridge integrator 2 phosphorylation leads to improved oocyte quality, ovarian health and fertility in aging and after chemotherapy in mice. Nature Aging, 2021, 1, 1010-1023.	5.3	5
135	Single cell RNA sequencing techniques and applications in research of ovary development and related diseases. Reproductive Toxicology, 2022, 107, 97-103.	1.3	5
136	Exogenous thymine DNA glycosylase regulates epigenetic modifications and meiotic cell cycle progression of mouse oocytes. Molecular Human Reproduction, 2015, 21, 186-194.	1.3	4
137	Nek11 regulates asymmetric cell division during mouse oocyte meiotic maturation. Biochemical and Biophysical Research Communications, 2016, 474, 667-672.	1.0	4
138	InÂvitro production of canine blastocysts. Theriogenology, 2019, 135, 164-168.	0.9	4
139	Meiotic chromatid recombination and segregation assessed with human single cell genome sequencing data. Journal of Medical Genetics, 2019, 56, 156-163.	1.5	4
140	Regulation of [Ca2+]i oscillations and mitochondrial activity by various calcium transporters in mouse oocytes. Reproductive Biology and Endocrinology, 2020, 18, 87.	1.4	4
141	Maternal ageing causes changes in DNA methylation and gene expression profiles in mouse oocytes. Zygote, 2020, 28, 360-366.	0.5	4
142	CENP-T, regulates both G2/M transition and anaphase entry by acting through CDH1 in meiotic oocytes. Journal of Cell Science, 2020, 133, .	1.2	4
143	Effects of m <scp>itochondriaâ€essociated</scp> Ca ²⁺ transporters suppression on oocyte activation. Cell Biochemistry and Function, 2021, 39, 248-257.	1.4	4
144	Potential role of tea extract in oocyte development. Food and Function, 2021, 12, 10311-10323.	2.1	4

#	Article	IF	CITATIONS
145	Critical Functions of PP2A-Like Protein Phosphotases in Regulating Meiotic Progression. Frontiers in Cell and Developmental Biology, 2021, 9, 638559.	1.8	4
146	Cell Division Cycle 5-Like Regulates Metaphase-to-Anaphase Transition in Meiotic Oocyte. Frontiers in Cell and Developmental Biology, 2021, 9, 671685.	1.8	4
147	Diabetic Uterine Environment Leads to Disorders in Metabolism of Offspring. Frontiers in Cell and Developmental Biology, 2021, 9, 706879.	1.8	4
148	Regulating the orderly progression of oocyte meiotic maturation events in mammals. Reproduction, Fertility and Development, 2013, 25, iii.	0.1	3
149	PAK4 Regulates Actin and Microtubule Dynamics during Meiotic Maturation in Mouse Oocyte. International Journal of Biological Sciences, 2019, 15, 2408-2418.	2.6	3
150	High-throughput sequencing reveals landscapes of female germ cell development. Molecular Human Reproduction, 2020, 26, 738-747.	1.3	3
151	Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development. Molecular Reproduction and Development, 2020, 87, 550-564.	1.0	3
152	Inhibition of CDK4/6 kinases causes production of aneuploid oocytes by inactivating the spindle assembly checkpoint and accelerating first meiotic progression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119044.	1.9	3
153	Melatonin improves meiosis maturation against diazinon exposure in mouse oocytes. Life Sciences, 2022, 301, 120611.	2.0	3
154	Application of three-dimensional fluorescence in situ hybridization to human preimplantation genetic diagnosis. Fertility and Sterility, 2009, 92, 1492-1495.	0.5	2
155	CENP-A regulates chromosome segregation during the first meiosis of mouse oocytes. Journal of Huazhong University of Science and Technology [Medical Sciences], 2017, 37, 313-318.	1.0	2
156	The methylation status in GNAS clusters May Be an epigenetic marker for oocyte quality. Biochemical and Biophysical Research Communications, 2020, 533, 586-591.	1.0	2
157	Septin 4 controls CCNB1 stabilization via APC/C ^{CDC20} during meiotic G2/M transition in mouse oocytes. Journal of Cellular Physiology, 2022, 237, 730-742.	2.0	2
158	<i>Rad9a</i> is required for spermatogonia differentiation in mice. Oncotarget, 2016, 7, 86350-86358.	0.8	2
159	PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development (Cambridge), 2022, 149, .	1.2	2
160	Geminin deletion in pre-meiotic DNA replication stage causes spermatogenesis defect and infertility. Journal of Reproduction and Development, 2017, 63, 481-488.	0.5	1
161	Single-cell RNA sequencing reveals species-specific time spans of cell cycle transitions in early oogenesis. Human Molecular Genetics, 2021, 30, 525-535.	1.4	1
162	Mouse-rabbit germinal vesicle transfer reveals that factors regulating oocyte meiotic progression are not species-specific in mammals. , 2001, 289, 322.		1

#	Article	IF	CITATIONS
163	Viable rabbits derived from reconstructed Oocytes by germinal vesicle transfer after intracytoplasmic sperm injection (ICSI). , 2001, 58, 180.		1
164	CENP-W regulates kinetochore-microtubule attachment and meiotic progression of mouse oocytes. Biochemical and Biophysical Research Communications, 2020, 527, 8-14.	1.0	1
165	Kinetochore scaffold 1 regulates SAC function during mouse oocyte meiotic maturation. FASEB Journal, 2022, 36, e22210.	0.2	1
166	MAPRE2 regulates the first meiotic progression in mouse oocytes. Experimental Cell Research, 2022, 416, 113135.	1.2	1
167	Epitalon protects against post-ovulatory aging-related damage of mouse oocytes in vitro. Aging, 2022, 14, 3191-3202.	1.4	1
168	Regulation of Cytoskeletal Functions in Pig Oocytes. Microscopy and Microanalysis, 2003, 9, 1200-1201.	0.2	0
169	SRT1720 enhances maturity and quality of oocytes in aged mice. Animal Science Journal, 2021, 92, e13608.	0.6	0
170	PTHrP promotes development of mouse preimplantation embryos through the AKT/cyclin D1 pathway and nuclear translocation of HDAC4. Journal of Cellular Physiology, 2021, 236, 7001-7013.	2.0	0
171	Optimal reference genes for realâ€time quantitative PCR and the expression of sigma factors in Acidithiobacillus caldus under various conditions. Journal of Applied Microbiology, 2021, 131, 1800-1812.	1.4	0
172	Down-Regulation Ovulation-Induction Leads to Favorable Outcomes in a Single Frozen-Thawed Blastocyst Transfer RCT. Frontiers in Endocrinology, 2022, 13, 797121.	1.5	0